1,862 research outputs found

    Two extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey

    Full text link
    We present spectroscopic observations with the 3.6m ESO telescope of two emission-line galaxies, J2104-0035 and J0113+0052, selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). From our data we determine the oxygen abundance of these systems to be respectively 12+logO/H = 7.26+/-0.03 and 7.17+/-0.09, making them the two most metal-deficient galaxies found thus far in the SDSS and placing them among the five most metal-deficient emission-line galaxies ever discovered. Their oxygen abundances are close to those of the two most metal-deficient emission-line galaxies known, SBS0335-052W with 12+logO/H = 7.12+/-0.03 and I Zw 18 with 12+logO/H = 7.17+/-0.01.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy and Astrophysic

    Luminous Blue Variable Stars In The Two Extremely Metal-Deficient Blue Compact Dwarf Galaxies DDO 68 and PHL 293B

    Full text link
    We present photometric and spectroscopic observations of two luminous blue variable (LBV) stars in two extremely metal-deficient blue compact dwarf (BCD) galaxies, DDO 68 with 12+logO/H = 7.15 and PHL 293B with 12+logO/H = 7.72. These two BCDs are the lowest-metallicity galaxies where LBV stars have been detected, allowing to study the LBV phenomenon in the extremely low metallicity regime, and shedding light of the evolution of the first generation of massive stars born from primordial gas. We find that the strong outburst of the LBV star in DDO 68 occurred sometime between February 2007 and January 2008. We have compared the properties of the broad line emission in low-metallicity LBVs with those in higher metallicity LBVs. We find that, for the LBV star in DDO 68, broad emission with a P Cygni profile is seen in both H and He I emission lines. On the other hand, for the LBV star in PHL 293B, P Cygni profiles are detected only in H lines. For both LBVs, no heavy element emission line such as Fe II was detected. The Halpha luminosities of LBV stars in both galaxies are comparable to the one obtained for the LBV star in NGC 2363 (Mrk 71) which has a higher metallicity 12+logO/H = 7.89. On the other hand, the terminal velocities of the stellar winds in both low-metallicity LBVs are high, ~800 km/s, a factor of ~4 higher than the terminal velocities of the winds in high-metallicity LBVs. This suggests that stellar winds at low metallicity are driven by a different mechanism than the one operating in high-metallicity winds.Comment: 26 pages, 5 figures, accepted for publication in the Astrophysical Journa

    New southern blue compact dwarf galaxies in the 2dF Galaxy Redshift Survey

    Get PDF
    Aiming to find new extremely metal-deficient star-forming galaxies we extracted from the Two-Degree Field Galaxy Redshift Survey (2dFGRS) 100K Data Release 14 emission-line galaxies with relatively strong [OIII] 4363 emission. Spectroscopic and photometric studies of this sample and, in addition, of 7 Tololo and 2 UM galaxies were performed on the basis of observations with the ESO 3.6m telescope. All sample galaxies qualify with respect to their photometric and spectroscopic properties as blue compact dwarf (BCD) galaxies. Additionally, they show a good overlap with a comparison sample of 100 well-studied emission-line galaxies on the 12+log(O/H) vs. log(Ne/O), log(Ar/O) and log(Fe/O) planes. From the analysis of the 2dFGRS subsample we report the discovery of two new extremely metal-deficient BCDs with an oxygen abundance 12+log(O/H) < 7.6 and of another seven galaxies with 12+log(O/H) < 7.8. Furthermore, we confirm previous oxygen abundance determinations for the BCDs Tol 1304-353, Tol 2146-391, UM 559 and UM 570 to be 12+log(O/H) < 7.8.Comment: 26 pages, 65 figures, 5 tables, uses psfig.sty, Accepted for publication in Astronomy and Astrophysics. The paper with high-resolution figures can be downloaded at http://www.uni-sw.gwdg.de/~papade/Publications/Papaderos2006_2dF.pd

    The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey

    Full text link
    We have re-evaluated empirical expressions for the abundance determination of N, O, Ne, S, Cl, Ar and Fe taking into account the latest atomic data and constructing an appropriate grid of photoionization models with state-of-the art model atmospheres. Using these expressions we have derived heavy element abundances in the \sim 310 emission-line galaxies from the Data Release 3 of the Sloan Digital Sky Survey (SDSS)with an observed Hbeta flux F(Hbeta)> 1E-14 erg s^{-1} cm^{-2} and for which the [O III] 4363 emission line was detected at least at a 2sigma level, allowing abundance determination by direct methods. The oxygen abundance 12 + log O/H of the SDSS galaxies lies in the range from ~ 7.1 (Zsun/30) to 8.5 (0.7 Zsun). The SDSS sample is merged with a sample of 109 blue compact dwarf (BCD) galaxies with high quality spectra, which contains extremely low-metallicity objects. We use the merged sample to study the abundance patterns of low-metallicity emission-line galaxies. We find that extremely metal-poor galaxies (12 + log O/H < 7.6, i.e. Z < Zsun/12) are rare in the SDSS sample. The alpha element-to-oxygen abundance ratios do not show any significant trends with oxygen abundance, in agreement with previous studies, except for a slight increase of Ne/O with increasing metallicity, which we interpret as due to a moderate depletion of O onto grains in the most metal-rich galaxies. The Fe/O abundance ratio is smaller than the solar value, by up to 1 dex at the high metallicity end. (abridged)Comment: 17 pages, 12 figures. Accepted for publication in the Astronomy and Astrophysic

    Tol 2240-384 - a new low-metallicity AGN candidate

    Full text link
    Active galactic nuclei (AGNs) have typically been discovered in massive galaxies of high metallicity. We attempt to increase the number of AGN candidates in low metallicity galaxies. We present VLT/UVES and archival VLT/FORS1 spectroscopic and NTT/SUSI2 photometric observations of the low-metallicity emission-line galaxy Tol 2240-384 and perform a detailed study of its morphology, chemical composition, and emission-line profiles. We determine abundances of nitrogen, O, Ne, S, Cl, Ar, and Fe by analyzing the fluxes of narrow components of the emission lines using empirical methods. We verify with a photoionisation model that the physics of the narrow-line component gas is similar to that in common metal-poor galaxies. Image deconvolution reveals two high-surface brightness regions in Tol 2240-384 separated by 2.4 kpc.The brightest southwestern region is surrounded by intense ionised gas emission on a spatial scale of ~5 kpc. The profiles of the strong emission lines in the UVES spectrum are asymmetric and all these lines apart from Halpha and Hbeta can be fitted by two Gaussians of FWHM ~75-92 km/s separated by ~80 km/s implying that there are two regions of ionised gas emitting narrow lines. The shapes of the Halpha and Hbeta lines are more complex. In particular, the Halpha emission line consists of two broad components of FWHM ~700 km/s and 2300 km/s, in addition to narrow components of two regions revealed from profiles of other lines. The extraordinarily high luminosity of the broad Halpha line of 3x10e41 erg/s cannot be accounted for by massive stars at different stages of their evolution. The broad Halpha emission persists over a period of 7 years, which excludes supernovae as a powering mechanism of this emission. This emission most likely arises from an accretion disc around a black hole of mass ~10e7 Msun.Comment: 15 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    An investigation of the luminosity-metallicity relation for a large sample of low-metallicity emission-line galaxies

    Full text link
    (abridged) We present 8.2m VLT spectroscopic observations of 28 HII regions in 16 emission-line galaxies and 3.6m ESO telescope spectroscopic observations of 38 HII regions in 28 emission-line galaxies. These emission-line galaxies were selected mainly from the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS) as metal-deficient galaxy candidates. We collect photometric and high-quality spectroscopic data for a large uniform sample of star forming galaxies including new observations. Our aim is to study the luminosity-metallicity (L-Z) relation for nearby galaxies, especially at its low-metallicity end and compare it with that for higher-redshift galaxies. From our new observations we find that the oxygen abundance in 61 out of the 66 HII regions of our sample ranges from 12+logO/H=7.05 to 8.22. Our sample includes 27 new galaxies with 12+logO/H<7.6 which qualify as extremely metal-poor star-forming galaxies (XBCDs). Among them are 10 HII regions with 12+logO/H<7.3. The new sample is combined with a further 93 low-metallicity galaxies with accurate oxygen abundance determinations from our previous studies, yielding in total a high-quality spectroscopic data set of 154 HII regions. 9000 more galaxies with oxygen abundances, based mainly on the Te-method, are compiled from the SDSS. Our data set spans a range of 8 mag with respect to its absolute magnitude in SDSS g (-12>Mg>-20) and nearly 2 dex in its oxygen abundance (7.0<12+logO/H<8.8), allowing us to probe the L-Z relation in the nearby universe down to the lowest currently studied metallicity level. The L-Z relation established on the basis of the present sample is consistent with previous ones obtained for emission-line galaxies.Comment: 27 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    Star-formation rate in compact star-forming galaxies

    Full text link
    We use the data for the Hbeta emission-line, far-ultraviolet (FUV) and mid-infrared 22 micron continuum luminosities to estimate star formation rates averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking and the star formation rate SFR_0 derived from the Hbeta luminosity at zero starburst age is found to be 0.04. We compare s with some commonly used SFRs which are derived adopting a continuous star formation during a period of ~100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of ~2 of the averaged over the lifetime of the bursting compact galaxy.Comment: 11 pages, 7 figures, accepted for publication in Astrophysics and Space Scienc
    corecore