26 research outputs found

    Feasibility Study of Solar Powered Unmanned Aerial Vehicle

    Get PDF
    High Altitude Long Endurance Unmanned Aerial Vehicles (HALE UAVs) could provide an improved service and/or flexibility at a reduced cost over existing systems for a vast number of civil patrol and surveillance applications. This document looks into the Feasibility and Conceptual Design of Solar Powered UAV for HALE applications. It mentions the advancements in technology of the components required to build an efficient solar powered UAV. It also provides a preliminary design methodology that can be adopted for the conceptual design of Solar Powered UAV. It also emphasizes the Aerodynamic difficulties that are faced in HALE configurations

    Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Get PDF
    Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    MRI in Characterization of Congenital and Developmental Anomalies of Spine

    No full text
    Background: The incidence of NTDs is also relatively high in Indian and Eastern Mediterranean populations. The care of these patients requires evaluation and attention to primary lesion and also to the affected systems outside the nervous system, at present and during the life long follow up many of these patients require. Objective: The purpose of study was to evaluate the role of magnetic resonance imaging (MRI) in characterizing the congenital and developmental disorders of spine. Methods: Total 70 patients with clinically suspected spinal dysraphism were included in the study. All the patients were made to undergo MRI spine using GE 1.5 Tesla MRI after taking informed consent for the same. The findings of MRI spine were assessed and analyzed. Results: There is female predominance, female to male ratio being 36:24. The peak occurrence of congenital spinal lesions is seen in age group 0-20 years (70%) and more common is females than males (36:24). Spina bifida is commonly associated with tethered cord (66.7%) followed by Syrinx (56.7%), Diastematomyelia (36.7%) and thick filum terminale (20%). Conclusion: Magnetic resonance imaging (MRI) is an accurate & noninvasive modality for characterizing and diagnosing these disorders of spine. It was also found that magnetic resonance imaging is superior in defining these lesions, which is a big advantage over other imaging modalities

    Microstructure and Mechanical Properties of Tungsten Heavy Alloy Prepared Using Tungsten Metal Powder Produced from Heavy Alloy Scrap

    No full text
    Tungsten metal powder, using a hydrometallurgical route, was extracted from tungsten heavy alloy scrap that was generated during machining of penetrator cores for the manufacture of Fin Stabilised Armour Piercing Discarding Sabot (FSAPDS). The powder was subjected to extensive characterisation that included physical property evaluation and analysis of the alloy chemistry in order to assess its suitability for the preparation of tungsten heavy alloys with enhanced mechanical properties. Subsequently, a tungsten heavy alloy based on W-Ni-Co was consolidated using this powder through liquid phase sintering followed by heat treatment and swaging operations to realize long rods (~500 mm). This was followed by a detailed characterisation that included microstructure and mechanical property. The mechanical properties of these rods are promising, exhibiting a good balance of tensile and impact properties, which in turn underscores the potential of these recycled powders in the production of premium quality heavy alloy long rods for stringent applications such as kinetic energy penetrators. &nbsp
    corecore