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Abstract

Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for
regulatory function. Although circadian (,24-hour) clocks constitute fundamental cellular timing mechanisms regulating
important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs
among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1
and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network
predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression)
suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in
liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific
phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal
transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.
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Introduction

Circadian clocks are endogenous oscillators conserved in nearly

all living organisms that drive ,24 hour cycles in physiology and

behavior. In mammals, the circadian oscillator is composed of

interconnected transcriptional translational negative and positive

feedback-loops which generate circadian rhythms at the molecular

level. Within this gene-regulatory network, a precise timing of gene

expression, protein–protein interactions (PPIs) as well as posttran-

scriptional and posttranslational modifications is essential for

sustaining circadian rhythms with normal dynamics [1–3]. The

interaction between the transcription factors CLOCK and

BMAL1, which has been discovered in a yeast-two-hybrid (Y2H)

screen [4], is crucial for the activation of the Period (Per1, Per2, Per3)

and Cryptochrome (Cry1, Cry2) genes. PER and CRY proteins form

large complexes that inhibit their own transcription by binding

directly to the CLOCK/BMAL1 complex during the late night

[5].

Circadian rhythms in gene expression are pervasive – 2–10% of

the transcriptome in a given tissue is under circadian control [6,7].

Consequently, also a large fraction of the proteome is thought to

be regulated in a time-of-day dependent manner, although

systems-wide studies of circadian protein abundance rhythms are

still rare (however, see [8]). Cellular functions are increasingly

recognized to be regulated by protein complexes or ‘modules’ [9],

thus PPIs and their timing are predicted to be crucial. In most

cases, in which PPIs exert a regulatory function, such interactions

are transient and occur only under specific conditions, e.g. as a

response to a signal, after binding of a co-factor or when the

expression of one or both partners is induced in response to a

changing cellular condition. Circadian clock regulation of cellular

functions via PPIs can be accomplished by restricting important

interactions to specific times of the day. In the circadian oscillator,

many of the known PPIs also happen predominantly at specific

times of the day, e.g. PER/CRY complexes bind to CLOCK/

BMAL1 in the late night to inhibit transactivation [5]. Here, the

temporal binding profile correlates with the abundance profiles of

PER and CRY proteins. While these examples demonstrate the

fundamental importance of precisely timed PPIs for the circadian

clockwork, we are still far from a comprehensive view of the PPI

network among circadian oscillator proteins and their dynamics.

Furthermore, the extent of a regulation of circadian output

processes via time-of-day dependent PPIs is largely unknown.

To elucidate unknown regulatory mechanisms within the

circadian clockwork we have systematically mapped PPIs among

46 circadian components using high-throughput Y2H interaction

experiments. We have identified 109 so far uncharacterized

interactions and have successfully validated a sub-fraction via co-

immunoprecipitation experiments in human cells. Among the

novel PPIs we have identified modulators of CLOCK/BMLA1

function indicating a role for protein phosphatase 1 (PPP1) in the

dynamic regulation of BMAL1 abundance. Furthermore, to
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generate a more comprehensive circadian PPI network we have

enriched and extended our experimental network with additional

validated interactions and interaction partners from literature,

some of which seem to be essential for normal circadian dynamics.

The integration of circadian mRNA expression profiles from

mouse liver allowed us to predict the interaction dynamics within

our network in hepatocytes. Using systematic genetic perturbation

studies (RNAi and overexpression in oscillating cells) we propose a

crucial role of dynamic regulation (via rhythmic PPIs) for the

molecular clockwork. Furthermore, we have extracted a dynamic

modular organization as a pervasive circadian network feature

possibly contributing to time-of-day dependent control of many

cellular processes. Systems analysis on a global scale regarding

circadian regulation of biological processes via rhythmic PPIs

suggests a time-of-day dependent organization of the interactome.

Altogether our data should provide a valuable resource of

circadian PPIs within hepatocytes that are important not only

for keeping the pace of the molecular clockwork but likely also for

the control of cellular physiology.

Results

Large-Scale Yeast-Two-Hybrid Interaction Analysis with
Circadian Clock Components

To systematically map the PPIs within the circadian clock

regulatory network, we performed a matrix-based two-hybrid

screen in yeast with 46 known or assumed clock or clock-

associated components (Figure 1A; for justification of our selection

see Text S1 and Table S1). In this screen, each potential

interaction was tested individually in six replicas to increase

screening saturation thereby minimizing the number of false

negatives (for details on the method, see Figure S1 and [10]). After

excluding transcriptionally autoactive components, we performed

11,040 individual yeast-two-hybrid experiments monitoring

growth on selective medium and b-galactosidase activity as

readouts for interaction (Figure 1B). Thereby, we identified 150

interacting protein pairs that occurred at least in two independent

experiments (Figure 1C). We could reproduce a large number (41

of 104) of previously described interactions (e.g., CLOCK-BMAL1,

PERs-CRYs, CRYs-BMAL1; see Figure S2A and Table S1)

corresponding to a rather high sensitivity (of ,40%) for a yeast-

two-hybrid assay, which is usually only about 25% [11].

Importantly, among the 150 detected PPIs we found 109

previously unknown PPIs between circadian clock proteins. For

example, we detected interactions between DEC1/2 and CRY1/

2, between CLOCK and RORb/c, between CLOCK and the a-

catalytic subunit of protein phosphatase 1 (PPP1Ca) as well as

between BMAL1 and WDR5 (Figure 1B, 1C).

To test whether the PPIs discovered in yeast can also occur in

mammalian cells, we performed co-immunoprecipitation experi-

ments in HEK293 cells. As representatives for the novel PPIs we

focused on the interactions of the transcriptional activators

CLOCK and BMAL1 – central players within the circadian

clock gene-regulatory network, whose functional modulation by

interacting proteins is likely to be highly relevant for normal

circadian rhythms. Twelve of the 14 (i.e., 86%) novel CLOCK and

BMAL1 interactions found in yeast were validated using co-

immunoprecipitation (Figure 1D and Figure S2), suggesting that a

substantial proportion of all interactions identified in yeast can also

take place in mammalian cells.

Enrichment, Extension, and Topology of the Circadian PPI
Network

To understand the structure and the organizing principles of the

complex web of interactions occurring between circadian clock

components, we created an interaction network using our novel

yeast-two-hybrid interaction data together with previously pub-

lished interactions among these components. This is necessary,

since the sensitivity of any high-throughput PPI detection assay is

limited [11] and thus the false-negative rate is expected to be

rather high. In addition, we extended this network by adding

known interacting proteins (direct ‘neighbors’) of our network

components (except regulatory components such as kinases,

phosphatases and F-box proteins, which are known to be involved

in many other cellular processes) to get an idea how the circadian

PPI network is embedded in the cellular interactome (Figure S3A).

To this end, we used PPI data extracted by human experts from

literature and stored in the UniHI database [12], however only

those, for which experimental validation exists. We did not use

predicted PPIs based on orthology or from computational text

mining. Thereby, a large PPI network with 134 components and

625 PPIs was created consisting of a circadian clock core (24

components), regulatory components (22 components) and the

neighborhood (88 components; Figure 2 and Table S1).

For this network, a mean shortest path length between any two

proteins of 2.8 links was calculated, i.e. most proteins are very

closely linked to each other indicating a ‘small world’ type of

network [13]. Like many other PPI networks [14], the circadian

network has properties of a ‘scale-free’ network, i.e. many proteins

have few and few proteins have many interactions (Figure S3B).

On average each component has 8.4 interaction partners,

however, 11 proteins are highly connected with more than 20

interactions (e.g. CLOCK, BMAL1, PER2, CREBBP, DEC1, AR,

HDAC1). Network topology analysis further revealed that our

network is hierarchically organized, i.e. highly connected compo-

nents (so-called ‘hubs’) link network regions with less connected

components, which themselves tend to form clusters (Figure 2;

Figure S3B).

Author Summary

Circadian clocks are endogenous oscillators that drive daily
rhythms in physiology, metabolism, and behavior. In
mammals, circadian rhythms are generated within nearly
every cell; and, although dysfunction of circadian clocks is
associated with various diseases (including diabetes and
cancer), the molecular mechanisms linking the clock
machinery with output pathways are little understood.
Since essentially all biological processes depend on
protein–protein interactions, we investigated here on a
systems-wide level how time-of-day-specific protein–pro-
tein interactions contribute to the temporal organization
of cellular physiology. We constructed a circadian inter-
actome using experimentally generated protein–protein
interaction data and made this network dynamic by the
incorporation of time-of-day-dependent expression data.
Interestingly, systematic genetic network perturbation
(RNAi and overexpression) suggests a crucial role for
circadian components involved in dynamic interactions.
Systems analysis of a global network revealed that
interacting proteins are in the liver significantly more
expressed at similar daytimes likely to restrict regulatory
interactions to specific circadian phases within cells.
Overall, circadian protein–protein interactions are predict-
ed to dynamically connect important cellular processes
(signal transduction, cell cycle, etc.) using—very often—
protein modules with components co-expressed in time,
shedding new light on the daily organization of cellular
physiology.

Circadian Protein–Protein Interaction Networks
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Characterization of the Circadian Clock Network
Neighborhood

Proteins in the direct network neighborhood that interact with

circadian clock core components might be relevant for regulating

clock output functions, but could also include yet unknown

proteins important for modulating the circadian clock machinery;

i.e. they might be clock components themselves. To test the latter

possibility, the expression of 88 neighborhood genes was

systematically downregulated by RNAi in human U2OS cells.

These cells possess robust circadian rhythms in cell culture, and

RNAi-mediated downregulation of canonical clock genes has been

shown to copy circadian phenotypes of classical knockout mice

[15,16]. We monitored circadian rhythms via a stably integrated

Bmal1 promoter-luciferase reporter construct and identified 21

components of the neighborhood that altered circadian period

upon knockdown by at least 0.5 hours (Figure 3 and Table S2).

For example, downregulating the cell-cycle kinase CHEK1 (that

can interact with TIMELESS and CK2) significantly shortened

the circadian period by more than 1 hour, while downregulating

the DNA helicase binding protein CDH4 (that is reported to

Figure 1. Systematic Interaction Mapping between 46 Circadian Clock Proteins and Associated Components. (A) Matrix based high-
throughput yeast-two-hybrid interaction screen. (B) CLOCK interactors: Mating controls (top left); upon PPI reporter genes are activated (top middle:
HIS, URA for growth selection, top right: lacZ for b-galactosidase activity). Bottom: Detected interactions with CLOCK; red lines: interactions previously
discovered in yeast (see also Figure S1). (C) Clock protein interaction matrix. Circles: interactions between two components not differentiating
between bait and prey configuration. (D) Validation of new CLOCK and BMAL1 interactions in mammalian cells. HEK293 cells expressing CLOCK- or
BMAL1-luciferase fusions were transfected with MYC-tagged components. Luciferase activity in anti-MYC co-immunoprecipitates is presented for one
representative result of at least two independent experiments with similar results (for method and input controls also see Figure S2). MYC-b-
galcactosidase fusions served as negative, MYC-BMAL1 and MYC-CRY1 as positive controls, respectively.
doi:10.1371/journal.pgen.1003398.g001

Circadian Protein–Protein Interaction Networks
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interact with RORc) lengthened it. In addition, knocking down

the androgen receptor (AR), which interestingly was found to

interact with many proteins (including NONO, GSK3b, HDAC1,

CREBBP, UBE2I and NCOR1/2), results also in a shortening of

the circadian period by almost one hour. Although these results

need additional in-depth validation, the relatively high number of

clock modulating components in the network neighborhood

suggests the presence of yet uncharacterized mechanisms in the

molecular circadian oscillator, as suggested earlier [15,16]. Future

studies are needed to investigate whether these circadian

phenotypes in U2OS cells are similar in other cell types and in vivo.

In addition to possibly being novel clock components, proteins

in the network neighborhood might also connect specific cellular

processes to circadian control by means of directly interacting with

clock components. Such interactions are likely time-of-day

dependent, which may be accomplished by rhythmic abundance

levels of one or both of the interaction partners. Therefore, we

hypothesized that the whole network but also the neighborhood

alone are significantly enriched in components with rhythmic

abundance levels. This is indeed the case – at least if we consider

(due to the lack of protein abundance data) mRNA expression

profiles of network components in mouse liver tissue – the

circadian transcriptome with highest available temporal (1 h)

resolution [6]. Of the 134 network components, 65 (49%) show a

significantly rhythmic mRNA expression profile in liver, a highly

significant enrichment when compared to a random selection of

genes from this expression data set (p,1026; Chi-squared test).

This may not be surprising, since the network as a whole contains

circadian oscillator components, many of which are known to be

rhythmically transcribed. However, if we analyze the neighbor-

hood separately, we still find a significant enrichment (p,1024;

Chi-squared test) in components that are rhythmically transcribed:

of the 88 components in the neighborhood, 38 (43%) are

rhythmically expressed in the liver (Figure 2, yellow circles)

suggesting that PPIs in the hepatocyte circadian clock network

might indeed be a means to mediate rhythmic control of cellular

physiology.

A Dynamic Circadian PPI Network
At what time of day do the PPIs in the circadian network occur

or – in other words - can we predict dynamic properties of our (still

static) network? Again, hypothesizing that a PPI more likely

happens at times, when the interaction partners are co-expressed,

we again used transcriptome data (from mouse liver) [6] as a

validated proxy for protein abundance [17] – an approach

successfully used also for the yeast interactome [18]. To first test

this hypothesis for PPIs in general (i.e. beyond our circadian

network), we compared the Pearson correlation coefficient (PCC)

of transcript levels (as a measure for co-expression) for all pairs of

interacting liver proteins present in the UniHI interactome

Figure 2. The Circadian Protein–Protein Interaction Network. The circadian interaction network integrates different interaction sources and
visualizes 134 proteins with 625 interactions. Red lines: interactions discovered in yeast (see Figure 1); green lines: previously described (and detected
in our Y2H screen) interactions (source: UniHI database and/or literature (MAN)); blue lines: interactions in network extension (EXT - stored in UniHI),
i.e. between clock core and regulatory components and neighborhood components (see also Figure S3A). Yellow border: components with a
rhythmic transcript in mouse liver [6]. Border width: significance for rhythmic expression.
doi:10.1371/journal.pgen.1003398.g002

Circadian Protein–Protein Interaction Networks
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database and for which we have time-resolved expression data [6]

with the PCC of randomly chosen pairs. Interestingly, we found

that interacting liver proteins are significantly more likely to be

expressed at similar circadian times (PCC.0.5 with PCC ranging

from 21 to 1; p,10215 Chi-squared test; Figure 4A left and

Figure S5). These data suggest that circadian co-expression may

be a common feature to restrict regulatory interactions to specific

times of the day. This assumption is supported by the fact that liver

proteins with many interaction partners – which are known to

exert regulatory functions - are more likely to be rhythmically

expressed (p,10210; Wilcoxon Rank test) and vice versa, i.e.

proteins with rhythmic transcripts have statistically more interac-

tion partners than constitutively expressed proteins (p,1025; Chi-

squared test). Interestingly, also the circadian PPI network displays

these properties: interaction between proteins is more likely, when

both proteins are co-expressed in time (Figure 4A, right).

Based on our results above, we hypothesized that many PPIs

happen at specific times of the day. Therefore, we assigned to each

PPI in our network a circadian phase, at which the corresponding

components are predicted to interact in the liver based on their

transcript expression. To this end, we approximated the abun-

dance of the complex of two proteins as the product of their

expression profiles. Derived time series for the interaction

complexes were subsequently examined for 24 hour periodicity

with a stringent threshold (false discovery rate FDR,1025)

resulting in the prediction of a dynamic circadian PPI network

with 193 individual protein pairs interacting at specific circadian

phases (Figure 4B and Table S3). Interestingly, PPIs in the liver

seem to be distributed over the whole circadian cycle. Beyond the

dynamic interactions that occur among circadian core compo-

nents in this network, we extract many time-of-day specific

putative regulatory interactions within the neighborhood. For

example, the lysine acetyltransferase KAT2B is predicted to bind

to the nuclear receptor coactivator NCOA1 - two proteins

involved in transcriptional regulation - during the late day, which

may hint to a time-of-day specific function of these proteins.

Nevertheless, it should be noted that this prediction is only valid

for the liver, since the identity of rhythmic transcript is highly

tissue-specific [19]. In addition, we are aware that the restriction to

transcript (and not protein) profiles, the possible tissue-specificity of

certain PPIs and also a potential competitive nature of the possible

interactions pose limitations to this analysis (but see below for

experimental validation of the daytime dependent interaction

between PPP1Ca and CLOCK/BMAL1). However, such a

framework offers the possibility to globally analyze processes

controlled by circadian PPIs in a time-specific manner.

Role of Dynamic Interactions for the Circadian Oscillator
Network components with many interaction partners - so-called

‘hubs’- not only have important organizing properties in scale-free

networks; they are also (controversially) discussed to be more

essential for life (at least in yeast, Drosophila and C. elegans; [20]). In

a dynamic network, two types of hubs have been proposed – ‘party

hubs’, which interact with their partners predominantly at similar

times, and ‘date hubs’, whose interactions mostly occur at different

times or locations [18]. In yeast, especially the ‘date hubs’ are

described to be global regulators for the cellular physiology

suggesting a prominent role of dynamic regulation within complex

networks.

To test, whether in our network ‘hub’ proteins are essential for

the trait ‘circadian rhythmicity’ - i.e. for generating and

maintaining circadian rhythms – we correlated circadian pheno-

types obtained upon genetic perturbation (see below) with

topological characteristics of network components. For perturbing

the network experimentally and assigning an essentiality score (for

circadian rhythmicity) to each component, we (i) systematically

knocked down and (ii) overexpressed every component of the core

and the regulatory part (not the neighborhood) of the network. We

performed these experiments in human U2OS reporter cells (as

described above) and analyzed the effect on circadian dynamics.

Figure 3. Network Neighborhood Contains Clock Modulating Components. Systematic RNAi-mediated downregulation of network
neighborhood genes in dexamethasone-synchronized U2OS cells harboring a Bmal1-promoter luciferase reporter. Shown are altered oscillation
dynamics (red dots with corresponding fit lines) for 16 genes achieved by individual RNAi constructs (see Table S2). For twelve genes, two RNAi
constructs resulted in similar phenotypes, for nine genes only one construct was available in our laboratory library. Black dots with corresponding fit
lines are controls representing the mean values of at least 80 irrelevant constructs. Period deviations from controls are shown.
doi:10.1371/journal.pgen.1003398.g003

Circadian Protein–Protein Interaction Networks
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While we could reproduce most of the phenotypes that have been

known from studies with classical knockout models (e.g. the

opposite period phenotypes upon Cry1 and Cry2 deletion as well as

arrhythmicity upon Bmal1 and Clock knockout), we detected

interesting novel phenotypes such as period lengthening for Rev-

Erbb (Nr1d2) downregulation (Figure 5A and Figure S4A). As

examples for phenotypes detected upon clock protein overexpres-

sion, Dec1 or Dec2 as well as Fbxl15 (the homologue to Drosophila

Jetlag) led to a substantial period lengthening (,1.5 hours and

,6 hours, respectively) (Figure 5B and Figure S4B). For each

network component tested we combined the downregulation and

overexpression phenotypes in a ‘phenotypic score’ (for rules, see

Text S1) to be able to correlate it with network properties of the

individual components. Surprisingly, we did not see a correlation

of phenotypic score with the number of interactions as it has been

observed in more global networks of yeast, Drosophila and C. elegans

[20]. In other words, ‘hub’ proteins apparently are not more

important for circadian rhythmicity than components with a lower

Figure 4. Interaction Dynamics within the Liver Circadian Protein–Protein Network. (A) Interacting proteins are more likely to be co-
expressed in time. Left: Co-expression of interacting proteins was calculated using the Pearson correlation coefficient (PCC) of circadian expression
profiles in liver [6] and compared to randomly selected protein pairs. Among interacting proteins co-expressed proteins (i.e. PCC.0.5) are
significantly overrepresented (Chi squared test: p,10215). 13% of interacting proteins have a PCC.0.5 compared to 4% for random pairs. Right:
analogous analysis for the circadian PPI network. Co-expressed (PCC.0.5) interacting proteins are highly overrepresented (Chi squared test:
p,10215; 22% compared to 4% with PCC.0.5). (B) Left: heat map representing the predicted dynamics of protein–protein interaction based on their
liver expression profiles. Interactions were classified as rhythmic if the product of their expression vectors shows highly significant periodic expression
(FDR,1025). Right: examples for interaction pairs and their predicted interaction phase. Red lines: products of individual transcript profiles of two
interacting proteins. Dotted rectangles highlight predicted phase of interaction.
doi:10.1371/journal.pgen.1003398.g004

Circadian Protein–Protein Interaction Networks
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connectivity. However, proteins that are predicted to be involved

in dynamic interactions (at least in liver) turned out to be more

essential for circadian rhythm generation (t-test: p,0.01; Mann-

Whitney U test: p,0.01; Figure 5C, Table S4). For example,

CLOCK, BMAL1, PER3 and CRY1 – to which we assigned 24,

21, 18 and 9 dynamic interaction, respectively – are especially

important for circadian dynamics (Figure 5A–5C). Importantly,

factors that have a rhythmic transcript per se (without taking PPIs

into account) are not significantly more likely to be essential for

circadian rhythms (independently of whether we set the rhyth-

micity threshold at a FDR of 0.05 or 0.01; not shown). While we

did not test the importance of rhythmic PPIs for circadian

dynamics directly, this correlative result suggests that the more

rhythmic interactions a protein is involved in, the more important

Figure 5. Importance of Dynamic Interactions for Circadian Rhythmicity. (A) Systematic RNAi-mediated silencing of circadian clock core and
regulatory components. RNAi constructs were lentivirally delivered into U2OS cells harboring a Bmal1-promoter luciferase reporter and oscillation
dynamics were monitored for several days (see also Figure 3). Circles represent the difference in period (6 s.e.m.; n = 3 independent experiments)
relative to non-silencing controls (n.10) for two RNAi constructs (if available). Filled circles show additional amplitude and/or damping phenotypes.
Cells were classified as arrhythmic (ar) if the fit to a cosine function resulted in a low correlation coefficient (see Text S1). Period deviations of more
than 2 hours are given (see also Figure S4A). (B) Systematic overexpression of circadian clock core and regulatory components. Experiments were
performed with lentivirally delivered overexpression constructs as described in (A) (see also Text S1). Results of three independent experiments (6
s.e.m.) are given (also see Figure S4B). (C) Correlation of circadian phenotype with number of dynamic interactions. The combined phenotypic score
from silencing and overexpression experiments is significantly different for components with many dynamic interactions ($5) compared to those
with few (,5) (t-test: ** p,0.01; Mann Whitney test: ** p,0.01).
doi:10.1371/journal.pgen.1003398.g005

Circadian Protein–Protein Interaction Networks
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it is for normal circadian rhythmicity. In addition, 40% (10 of 25)

of the 45 ‘hubs’ that qualify as ‘party hubs’ in the liver (Table S3)

show circadian phenotypes upon genetic perturbation, while the

only two ‘date hubs’ (CLOCK and AR; Figure S5) both are

sensitive to perturbation - in line with the described prominent role

of ‘date hubs’ for network organization [18].

Regulation of Cellular Processes via Dynamic PPIs
Are dynamic PPIs also important for the regulation of cellular

events? To predict such regulations, we first assigned to each

network component one or more specific gene ontology (GO)

categories from a reduced, less redundant and more distinct set of

GO categories (for details see Text S1). Secondly, using the

information whether a PPI is likely to be dynamic or not (see

Figure 4B), we investigated which cellular processes (as represent-

ed by GO categories) are significantly connected via dynamic PPIs

(see Text S1). In other words, we tested whether in our network

dynamic interactions are over-represented in the total set of

interactions between a pair of GO categories. This resulted in a

‘‘process network’’ with 12 dynamic links between 11 biological

processes with ‘circadian rhythm’ as the central hub. This hub is

rhythmically connected with GO terms such as ‘DNA repair’,

‘transcriptional regulation’ and ‘response to external stimulus’

(Figure 6A; Table S5). A strong association of the circadian clock

network with these processes relevant for e.g. cancer and cell-cycle

is also found by (i) Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis of the network neighborhood only

(Figure 6B) and (ii) the significant (p,1028; Chi-squared test)

enrichment of the network neighborhood with cancer-associated

genes (as reported in the Cancer Gene Census list (www.sanger.ac.

uk/genetics/CGP/Census)).

How are these rhythmically regulated processes connected in

our network - by individual components or rather by functional

modules consisting of interconnected components? We explored

our circadian PPI network topology for clusters of highly

connected proteins (structural modules) and identified 11 different

modules within the circadian network (Figure 6C; Figure S6A and

Text S1) often with module components co-expressed in time

suggesting that modular organization within the circadian PPI

network might contribute to a coherent functional regulation of

hepatocyte processes by the circadian clock. This is also supported

by a high cluster coefficient (0.38) of the circadian network

compared to randomized networks (0.1460.01) (Figure S3C).

Next, we analyzed whether time-of-day dependent interaction

of cellular processes via PPIs can also predicted on a more global

scale. To this end, we first assigned 2788 rhythmic PPIs (using the

approach described above - see Figure 4B) to a global

interactome derived from the UniHI database (Figure 6D left)

and then searched for GO terms (‘biological process’) that are

significantly connected via predicted dynamic PPIs (Figure S6B).

We extracted a network of 20 biological processes with 89

dynamic links (for details see Text S1). The central ‘hub’ of this

‘process network’ constitutes the term ‘signal transduction’

(Figure 6D middle and Figure S6C) suggesting a possible time-

of-day dependent modulation of hepatocyte events such as

‘protein transport’, ‘response to stress’ and ‘cell death’ by

signaling pathways via rhythmic PPIs.

To characterize the underlying PPI network properties, we

constructed a global dynamic interactome and found that it again

has ‘scale-free’ properties with 269 dynamic ‘hubs’, i.e. proteins

with at least 5 predicted dynamic interactions. The protein with

the most predicted rhythmic interactions (79 of 105 in total) is

heat-shock protein HSP90AA1 – a factor required for proper

protein folding upon heat stress. Notably, three of the four

interaction-richest proteins (with more than 40 interactions) are

cell-surface receptors (estrogen receptor 1, transforming growth

factor beta receptor 1 and platelet derived growth factor receptor,

beta) again suggesting a central role of signaling pathways for

dynamic regulation in the liver (Figure 6D right).

Protein Phosphatase 1 Modulates CLOCK/BMAL1-
Dependent Transactivation

Our systems biology analysis of the circadian interactome

points to a timely regulated action of chromatin modifying

enzymes (see Figure 6A, 6C). It is known that at the heart of the

circadian oscillator binding of the transcription factor hetero-

dimer CLOCK/BMAL1 is controlled by methylation and

acetylation states of histones at specific promoter regions [21–

25]. In addition, CLOCK/BMAL1 transactivation activity is

modulated by a precisely timed acting repressor complex. In our

Y2H screen, we discovered 15 new interaction partners for

CLOCK/BMAL1, which might play a role in modulating their

function in cells (see Table S1). We systematically tested

whether these interactors (and/or their paralogs – in total 28)

are able to modulate CLOCK/BMAL1 transactivation mea-

sured from an E-box containing artificial promoter with firefly

luciferase as reporter (Figure S7A). As expected, already

characterized CLOCK/BMAL1 repressors such as CRYs,

PER2 and DECs [4,26,27] substantially inhibited transactiva-

tion. Interestingly, among the 15 new interactors (including

their paralogs) PPP1Ca (protein phosphatase 1 alpha, catalytic

subunit), but not PPP1Cb severely and RORs moderately

reduced the reporter signal (Figure 7A). The effect of PPP1Ca
on CLOCK/BMAL1-mediated transactivation was dose depen-

dent (Figure 7B).

Our in silico analysis predicted that PPP1Ca binds to the

CLOCK/BMAL1 complex in mouse liver in a time-of-day

specific manner. We tested this by co-immunoprecipitation

experiments using antibodies against endogenous proteins

(Figure 7C). We selected circadian times that were predicted by

our dynamic interaction analysis (Figure 4B) to correspond to

maximal and minimal likelihood of PPI. Indeed, we detected an

association of endogenous PPP1Ca with CLOCK/BMAL1 at

CT0 (CT = circadian time) while only little PPP1Ca-CLOCK/

BMAL1 complex was found at CT12 suggesting a circadian time-

dependent modulation on CLOCK/BMAL1 function. As

CLOCK and BMAL1 phosphorylation have been described to

affect their stability [28,29], we tested whether PPP1Ca acts on

this level. We stably expressed CLOCK and BMAL1 as a GFP-

fusion protein in human U2OS cells with DsRed (a red fluorescent

protein) on the same transcript [30,31]. Protein stability can be

monitored via the ratio of GFP to DsRed signal using FACS

analysis thereby normalizing for different transcription rates in

individual cells. As proof-of-concept of this approach, we

confirmed the previously reported destabilizing effect of GSK3b
on BMAL1 [32] (Figure S7B–S7D). While we could not detect an

effect of PPP1Ca on CLOCK stability, we saw a substantial and

significant decrease of BMAL1 abundance (Figure 7D). In

addition, endogenous BMAL1 levels were reduced by about

50% upon stably overexpression of PPP1Ca in U2OS cells

(Figure 7E). Lower BMAL1 abundance in the presence of PPP1Ca
is likely due to reduced BMAL1 stability, since cycloheximide

treated cells (in which de novo protein synthesis is blocked) revealed

a much faster degradation of endogenous BMAL1 when PPP1Ca
is overexpressed (Figure 7F). Together, these data indicate that

BMAL1 stability and probably thereby transactivation is regulated

by PPP1Ca.

Circadian Protein–Protein Interaction Networks
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Discussion

Novel Protein–Protein Interactions within the Molecular
Oscillator

Protein–protein interactions among circadian clock proteins are

often time-of-day dependent, which is crucial for the function of

the molecular circadian oscillator. While the recent years have

witnessed the identification of an increasing number of clock

proteins or modulators [15,16,21,33,34] a comprehensive analysis

of PPIs within the circadian clockwork - in particular with respect

to the timing of the PPIs - is still missing. Here, we identified 109

so far uncharacterized interactions within the circadian clockwork

in yeast and have successfully validated a sub-fraction in

mammalian cells. While our matrix screen design allowed us to

perform independent replica experiments thereby reducing the

risk of false positives and false negatives, it is clear that due to the

obvious limitations of the Y2H system [35] our network is likely

still far away from saturation. For example, interactions that

depend on posttranslational modifications or on more than two

proteins are difficult to detect in Y2H assays. Nevertheless, our

screen showed a rather high sensitivity (,40% recovery of

previously reported PPIs) compared to other Y2H reports or

Figure 6. Prediction of Circadian Output Regulation. (A) Coupling of biological processes via predicted dynamic PPIs. Node size: number of
genes in GO category (significance (FDR,0.25, ,0.01 and ,0.0001 from yellow to red). Edge width and color: number of interactions and enrichment
in dynamic interactions (blue: p,0.001; green: p,0.1) (for details see main text and Text S1). (B) KEGG pathway analysis of network neighborhood.
From yellow to red (p,0.02, ,0.0005 and ,0.0002). Font: number of components in each category. (C) Highly connected clusters. Modules with
histone methyltransferase complex, transcription coactivator activity, response to DNA damage stimulus and histone acetyltranferase activity as
significant GO terms (left to right). Peak expression times are given within circles (see Figure S6A for all modules identified). (D) Left: Predicted
dynamic PPIs within the liver (see Figure S6B). Middle: coupling of biological processes via predicted dynamic interactions in the liver. Node color:
significant dynamic interactions (p,0.25, ,0.0001, p,1028 from yellow to red); edge color: enrichment in dynamic interactions (blue: p,10216;
green: p,1025). Right: dynamic global PPI network. Node color: most significant biological processes, i.e. cell cycle (green), cell death (red), protein
modification (yellow), signal transduction (blue) and transcription (orange).
doi:10.1371/journal.pgen.1003398.g006
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other PPI interaction methods [11]. In addition, we estimate to

have only a low false-positive rate, since we could validate 86% of

all CLOCK and BMAL1 interactions in mammalian cells.

Interestingly, many of the new interactions occurred between

core clock components and regulatory components such as kinases

e.g., CSNK2b, phosphatases (e.g., PPP2, PPP1), and F-box proteins

(e.g. FBXW11). Hence, our data should be a valuable resource for

studying molecular events within the circadian system with so far

uncharacterized posttranslational mechanisms being especially

interesting. Whereas phosphorylation of clock proteins are

increasingly recognized as crucial for circadian dynamics, de-

phosphorylation events have not been studied as extensively [36].

Therefore, we characterized the newly discovered interaction

between PPP1Ca and the CLOCK/BMAL1 heterodimer.

Indeed, we could validate our in silico prediction of the daytime-

dependence of this PPI, which negatively regulates BMAL1

abundance (see Figure 7 and Figure S7), whereas others propose

PER proteins as substrates of PPP1 [37,38]. Further work is

needed to identify the respective regulatory subunits that may

mediate substrate specificity.

Circadian Protein–Protein Networks
Our circadian PPI network is very densely connected (Figure 2)

with a high clustering. How can such a network function? We

analyzed both the predicted temporal organization, which

separate PPIs in time as well as modular organization, which

organize the network in functional complexes. To investigate

temporal organization, we have integrated circadian expression

profiles from mouse liver for the interacting pairs of proteins

assuming that co-expression on transcript level can represent

individual protein abundance probably as one limiting factor for

physical interaction. De Lichtenberg et al. have pioneered the

analysis of dynamic protein–protein interactions with a specific

focus on cell-cycle stages in yeast also integrating transcription

data [39] and Atwood et al. predicted the interaction time of

circadian co- and antiphasic expressed proteins [40]. However,

our analysis is not restricted to a specific process or specific

circadian phases, but provides a systems-wide view of circadian

PPI dynamics.

Our transcript-based analysis led to the construction of a

dynamic circadian (albeit only liver-specific) PPI network, in which

PPIs are formed at all circadian phases (see Figure 4B). Obviously,

our analysis harbors several limitations, since PPIs in vivo depend

on a variety of factors such as spatial restrains, restriction to

specific tissues, relative protein abundance, mRNA processing,

stoichiometry and interaction kinetics, complex formation and

posttranslational modifications. All these parameters are not

represented by the corresponding mRNA profiles of interaction

partners. However, our assumption that indeed dynamic binding

events can be approximated by such an approach is supported by

(i) our finding that co-expression of transcripts at similar circadian

phases more often occurs among interacting proteins (see Figure 4B

and Figure S6B), (ii) known interaction dynamics between

components of the circadian system can be reproduced (see

Figure 4B), e.g. the circadian phase-specific CLOCK/CRY1

interaction [5], and (iii) the in silico predicted time-of-day

dependent interaction between PPP1Ca and CLOCK/BMAL1

could be validated with endogenous liver components. Neverthe-

less, it should be noted, that on a systems-wide scale it is still largely

unknown, whether and to which extent genes with rhythmically

expressed transcripts also display circadian protein levels. While

recent comparisons between transcript levels and protein levels

have shown a rather good correlation [41,42], our circadian PPI

network should still be considered as a prediction.

Dynamic ‘hubs’ (proteins predicted in many rhythmic PPIs)

seem to be especially important for circadian rhythms (see

Figure 5C) as revealed by our genetic perturbation analyses.

Thus, apparently not the absolute number of interactions is crucial

for the importance of a clock protein but the degree of dynamic

PPIs. This may be not too surprising, since precisely timed

interactions between activators and their repressors is the

Figure 7. Protein Phosphatase 1 Modulates CLOCK/BMAL1
Function. (A) CLOCK and BMAL1 interactors identified in yeast and
their paralogs were co-transfected with CLOCK/BMAL1 and an E-box
containing luciferase reporter (see also Figure S7A). Shown are means 6

s.d. of CLOCK/BMAL1 modifiers (n = 3; *** p,0.001, t-test). (B) PPP1CA
dose-dependently reduces CLOCK/BMAL1 transactivation (n = 3; means
6 SD.). (C) PPP1CA is present in the CLOCK/BMAL1 complex. Murine
livers were harvested at indicated times. Dashed lines: longer exposure.
(LC: light chain; HC: heavy chain). (D) PPP1CA destabilizes BMAL1
protein. Left: Stability is reported by the change of EGFP to DsRed ratio
[30,31]. Right: PPP1CA co-expression with BMAL1, CLOCK or short-lived
EGFP fusion proteins in U2OS cells reduces BMAL1 stability (mean 6
s.d.; ***p,0.001; t-test; n = 3; (see also Figure S7B, S7C). (E) Endogenous
BMAL1 levels are reduced upon PPP1CA overexpression in U2OS cells.
Depicted are two independent experiments. (F) PPP1CA reduces BMAL1
stability. U2OS cells stably expressing PPP1CA or GFP were harvested at
the indicated time points after cycloheximide (CHX) application and
protein levels were analyzed by Western blot. Shown is one
representative of two independently performed experiments (see also
Figure S7D).
doi:10.1371/journal.pgen.1003398.g007
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fundamental principle of the circadian negative feedback mech-

anism. Interestingly, this principle may be translated to a global

scale: we find that proteins with a rhythmic transcript have

significantly more interaction partners than non-rhythmic proteins

(p,10210, Wilcoxon Rank test). In addition, proteins that qualify

as regulatory components (as defined by their GO category

‘regulation of biological process’) have significantly more interac-

tion partners than non-regulatory proteins (p,10215, Wilcoxon

Rank test; see also Text S1). Together, this suggests that rhythmic

control of PPIs is an essential feature of biological networks. While

such analyses are only of correlative nature, it would be interesting

in future studies to analyze directly whether a particular PPI or the

rhythmicity of a particular PPI is required for normal rhythms. To

this end, however, novel (perhaps pharmacological) tools are

needed to specifically disrupt the PPI without interfering with the

abundance or other PPIs the component might execute.

Regulation of Cellular Physiology by Dynamic Protein–
Protein Interactions

In the last decade transcriptome analysis were successfully used

to study circadian dynamics on a systems-wide level [6,7] with

mRNA rhythms serving as indicators for output control.

Corresponding comprehensive studies on the level of the proteome

are still largely missing. To get novel insights into the time-of-day

dependent regulation of cellular processes we propose a new

strategy to predict circadian regulation at the level of protein

complexes rather than looking at mRNA profiles of individual

components. Based on this dynamic interactome we have

constructed a ‘process network’ with many processes (represented

by corresponding GO terms) strongly connected by predicted

dynamic PPIs (see Figure 6D and Figure S6C). While this concept

has obvious limitations (ambiguous GO assignments, predictive

nature of rhythmic PPIs, etc.) it allows a first, systems-wide glance

on how cellular processes might be regulated in a time-of-day

specific manner beyond circadian transcription. Future studies are

needed to investigate to what extent and on what mechanistic

bases rhythmic PPIs contribute to the dynamic modulation of

cellular processes.

Overall, we propose a global view on the circadian control of

protein–protein interactions important not only for the circadian

oscillator but also for the temporal orchestration of many essential

cellular processes.

Materials and Methods

Y2H Interaction Mapping
Matrix-based Y2H interaction analyses were performed essen-

tially as described [10,43]. For the generation of the Y2H matrix

46 full-length entry constructs were shuttled into Y2H vectors

resulting in LexA DNA binding domain fusions (bait configuration)

and Gal4 transcription activation domain hybrids (prey configu-

ration). The L40ccaMATa yeast strain was transformed with prey

constructs while baits were introduced into a MATa strain carrying

HIS3, URA3, and lacZ as reporter genes. All constructs were tested

for auto-activation properties. For mating, liquid cultures of the

MATa strain were mixed with prey colonies in 384-micro titer

plates and mixtures were then spotted onto yeast complete

medium agar plates. After mating at 30uC, colonies were

transferred into 348 well plates containing SDII liquid (-Leu, -

Trp) selective medium and then transferred to SDII agar for

selection of diploid yeast (at 30uC). Diploid yeasts were spotted on

solid selective SDIV agar plates (-Leu, -Trp, -Ura, -His) as well as

on nylon membranes placed on SDIV agar plates. X-Gal assays

were performed with the colonies that grew on membranes as

described.

Co-Immunopreciptitaion with BMAL1 or CLOCK-
Luciferase Fusion Proteins

HEK293 cells were lentivirally transduced with Clock- or Bmal1-

luciferase constructs. Cells stably expressing luciferase hybrids were

transfected with MYC-tagged putative interactors. After 48 hours,

lysate containing one million luciferase counts was subjected to

immunoprecipitation. Pull-downs were performed with an anti-

MYC or an isoform specific ideotypic antibody and agarose beads

after overnight incubation. After three washes luciferase activity of

pulled-down complexes was measured.

Western Blot Analysis
Western blot analysis was performed essentially as described

[15]. Briefly, proteins were denatured via boiling in SDS-loading

buffer. Separation was performed by SDS-PAGE using 4%–12%

Bis-Tris gels. Proteins were transferred to nitrocellulose membrane

and incubated with primary antibodies. Membranes were probed

with corresponding HRP-conjugated secondary antibodies.

Chemiluminescence reaction was performed for protein visualiza-

tion.

Genetic Perturbation and Circadian Phenotyping
RNAi and overexpression constructs were lentivirally delivered

as described [15]. Briefly, filtered medium containing virus

particles was used for transduction of human U2OS cells carrying

the Bmal1-promoter luciferase reporter [15] in the presence of

protamine sulfate. Next day, medium was exchanged to puromy-

cin or blasticidine containing medium. After positive selection cells

were synchronized by a 30 min pulse of dexamethasone.

Bioluminescence was monitored for ,6 days in a TopCount

luminometer with a sampling rate of 30 min. Time series were

analyzed for circadian rhythmicity correlating them to a cosine

function via the ChronoStar software [15].

Co-Transactivation Assay
HEK293 cells were transiently transfected with a firefly

luciferase reporter (containing six E-box enhancer elements),

CLOCK/BMAL1 and individually all discovered putative

CLOCK and BMAL1 interactors (including their paralogs or

functional subunits) and a renilla luciferase construct for normal-

ization [4,27]. Signals were detected with a dual-luciferase

reporter assay in a luminometer plate reader. Experiments were

repeated three times.

Protein Stability Measurement of EGFP-BMAL1
U2OS cells stably expressing a fluorescence reporter either with

BMAL1 or CLOCK as EGFP fusion protein (see Figure 7D left;

[30,31]) were transduced with lentiviruses containing PPP1Ca or

GSK3b expression constructs. Cell fluorescence was analyzed

using flow cytometry (FACS Canto II). Red fluorescence of DsRed

and green fluorescence of EGFP intensities of DsRed positive cells

were detected. The protein stability index (PSI) is defined as the

maximum of the distribution curve of the ratio between EGFP and

DsRed intensities. Thus, a high PSI value corresponds to a high

green fluorescence intensity, i.e. highly abundant (and likely stable)

fusion protein.

Prediction of Rhythmic Protein–Protein Interactions
Firstly, standardized 48-hour transcript liver profiles taken from

Hughes et al., 2009 [6] were analyzed for 24 hour periodicity

Circadian Protein–Protein Interaction Networks
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using Fourier analysis:

F x½ �~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i cos 2 � p � ti=Tð Þ � xið Þ2z

X
i sin 2 � p � ti=Tð Þ � xið Þ2

s

where x is the standardized expression vector (mean(x) = 0;

sd(x) = 1) for the gene, T is the period (in our case 24 h), and xi

is the measured expression at time point ti. Statistical significance

was calculated by comparison with randomly permutated time

series using the Bioconductor cycle package [44]. Secondly,

abundance AC of a complex C formed by two interacting proteins

P1,2 is assumed to be proportional to the expression E of P1,2.

Abundance AC(t) over time is approximated by the product of

expression vectors EP1(t) * EP2(t), which was then associated to the

corresponding PPI. As proxy for protein abundance, the transcript

levels over time were utilized, thus

PPI12*Ac(t)&c � AP1(t) � AP2(t)?Ac(t)&EP1(t) � EP2(t)

Statistical significance of AC(t) rhythmicity was calculated using the

Fourier-score and permutated time series as background model

after standardization (i.e. mean (EP1 * EP2) = 0; sd (EP1 * EP2) = 1).

A phase was assigned to a periodic interaction through shifting a

cosine (with 24 h periodicity) along the time axis and measuring

the overlap of the expression levels with the cosine curve. The time

shift leading to a maximum overlap was considered as the phase a
of the PPI and ranges from 0 to 24 h.

Construction of the Dynamic Interactome
All PPIs of the compiled human interactome in the UniHI

database (N = 45775) were assessed for possible dynamic behavior

[12,45], as described above. Human proteins were mapped to

their mouse orthologs and periodicity of 30413 interactions was

analyzed as described above resulting in the prediction of 2788

significantly (FDR,1025) dynamic interactions.

Data Availability
The discovered PPIs are listed in the IMEx (http://www.

imexconsortium.org) consortium through IntAct [pmid:

19850723] and assigned the identifier IM-16832.

Supporting Information

Figure S1 The Yeast-2-Hybrid (Y2H) Approach (referring to

Figure 1A–1C). (A) Principle of Y2H screen. Y2H is a genetic

approach where two interacting proteins can reconstruct a

functional transcription factor, which leads to the activation of

several reporter genes (ura, his: growth selection on minimal media;

lacZ: b-Galactosidase activity). One interactor X is fused to a DNA

binding domain (DBD: LEXA; bait configuration), while the other

Y to a transcription activation domain (AD: GAL4; prey

configuration). Both hybrids are transformed into different yeast

strains (MATa or MATa). Interaction of X and Y is detected after

mating via activation of reporter genes. (B) Left: matrix-based Y2H

screening. Defined bait and prey fusions allow performing several

repetitions of an interaction screen. Matrix position reveals

positive interaction pairs without the necessity of sequence

identification. Right: library-based Y2H screening. Bait is

presented to prey library, which may contain redundant

sequences. Growth competition and sequencing are required for

the identification of interactors (modified from Golemis E.A. and

Adams P.D. (2005) Protein–protein Interactions 2nd ed. New

York: CSHL PRESS. 744p). (C) Auto-activation test for 46

circadian clock components. Left: yeast strain containing preys

were mated with a yeast strain expressing the DBD-domain only.

Results are shown for four independent mating experiments.

NPAS2 (position D2) showed weak auto-activating properties

(weak growth on selective media, no lacZ expression) but was

nonetheless included for high-throughput interaction mapping.

Right: auto-activation test for baits. Yeast containing baits were

mated with a yeast strain expressing the AD-domain only. PER2

(A2), BMAL1 (A5), NR1D1 (B5), NR1D2 (B6), RORB (C3) and

PPP2CA (G1) showed strong auto-activation of all reporters

leading to exclusion of these components in the bait configuration

from further interaction experiments.

(TIF)

Figure S2 Reproduction Rate of Y2H Screen and Validation of

CLOCK and BMAL1-Interactions in Mammalian Cells (referring

to Figure 1C, 1D). (A) 109 interactions that occurred in our

matrix-based Y2H screen were so far uncharacterized. 23

interactions were previously found in library based Y2H screens

and reproduced with our approach, whereas 18 interactions were

reproduced that were detected previously by other approaches (not

in yeast cells) (for reproduced interactions see Table S1). 63

previously detected PPIs were not found in this Y2H screen. (B)

Principle of co-immunoprecipitation experiments. HEK293 cells

stably expressing CLOCK or BMAL1 C-terminal luciferase

fusions were transfected with MYC-tagged interactors. Lysates

containing one million luciferase counts were subjected to

immunoprecipitation experiments. Pull-downs were preformed

with an anti-MYC antibody or an ideotypic antibody in (beads)

controls. After washing, beads pellets were incubated with a

luciferin containing reagent and luciferase activity was measured

(for details see Text S1). (C) Input detection via Western blot

analysis. 25 mg of total lysate were loaded per lane as an input

control. MYC-fusions were detected with an anti-MYC antibody.

The results for the co-immunoprercipitations as performed in

Figure 1D are shown. CLOCK and DBP fusions could not be

detected in lysates as MYC (*), FLAG or V5-hybrids (not shown).

Expected protein size (from SwissProt database (www.expasy.org))

is shown in brackets. (D) NONO and NR1D2 were not detected as

direct BMAL1 interactors in yeast. Co-immunopreciptitation

experiments as performed for validation in Figure 1D with

BMAL1-LUC and MYC-NONO or MYC-NR1D2 also show no

interaction in mammalian cells using our validation system.

Western blots show input controls as performed in (C).

(TIF)

Figure S3 Construction of the Circadian Protein–protein

Interaction Network and Topology Analysis (referring to

Figure 2). (A) Enrichment and extension of the circadian

protein–protein interaction network. The experimental derived

network was firstly enriched by adding 63 previously described

interactions (Y2H screen false negatives) from literature and

extended by 88 direct neighbors of clock core components as

stored in the UniHI database. This resulted in the construction of

a circadian protein–protein interaction network consisting of 134

proteins and 625 interactions (see also Table S1). (B) Degree

frequency of proteins in the circadian clock network. The number

of proteins was plotted as a function of the number of neighbors

that proteins in the network have. The degree frequency indicates

properties of a ‘scale-free’ network, i.e. many proteins have few and

few proteins have many interactions. (C) Dependence of the

clustering coefficient [10] on the number of interactions of

proteins. The clustering coefficients were derived by averaging
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over all proteins with the same number of interactions (degree).

The linear fit of the logged values is shown as solid line. (D)

Dependence of the topological coefficient [10] on the number of

interactions of proteins. The displayed topological coefficients

were derived by averaging over all proteins with the same degree.

The linear fit of the logged values is represented as solid line.

(TIF)

Figure S4 Visualization of Altered Circadian Phenotypes for

Clock Core and Regulatory Components Upon Genetic Pertur-

bation (referring to Figure 5A, 5B). (A) Systematic gene silencing.

RNAi constructs were lentivirally delivered into U2OS cells

carrying the Bmal1-promoter luciferase reporter and oscillation

dynamics were monitored for several days. Data were detrended

using the Chronostar analysis software. Black lines show non-

silencing controls. Red dotted lines depict phenotypes for one

RNAi construct. Period differences from mean are given (ar:

arrhythmic, amp: low amplitude, damp: high damping, mag:

magnitude). (B) Systematic overexpression. GFP overexpression

was used as controls (black curves) Phenotypes were visualized as

described in (A).

(TIF)

Figure S5 Characterization of Hubs in the Circadian Protein–

protein Interaction Network (referring to Figure 4). Background

distribution of average Pearson correlation coefficient (PCC) for

fully random drawn interactions partners (black line) and partially

random interaction partners (blue line) as well as the observed

average PCC for 4 proteins in the circadian network are shown.

CRY2 obtained significantly higher average PCC (FDR,0.01)

than expected by chance whereas AR and CLOCK obtained

significantly lower average PCC (FDR,0.01) than expected by

chance. The PCC of ARNTL/BMAL1 is not significantly altered.

(TIF)

Figure S6 Identification of Functional Modules within the

Circadian Protein–protein Interaction Network and Dynamic

Regulation within the Global Interactome (referring to Figure 6C,

6D). (A) Highly connected clusters were identified using the

Cytoscape plugins MCODE or the ClusterOne algorithm (for

details on analysis see Text S1). Node colors: grey – network

neighborhood, red – clock core, green – regulatory components.

Yellow circles highlight rhythmic RNA profiles. Numbers are

mRNA peak times in circadian time (CT). Modules were analyzed

for enrichment of processes using Gene ontology (GO), KEGG

and Pfam family annotations (see also main text as well as

Figure 6C and Tex S1 for significance of enrichment). (B)

Construction of a global dynamic protein–protein interactome. (C)

Coupling of biological processes within the interactome via

predicted rhythmic PPIs. Significance of connections was

calculated based on the comparison with randomized versions of

the dynamic interactome. Connections, for which no more than

10 out of 1000 random networks show a larger number of

predicted rhythmic interactions are displayed. In total, 26

processes are linked via 52 connections. Node color: significance

of enrichment in components with dynamic interactions (yellow:

p,0.25; orange: p,1024; red: p,1028); node size: number of

genes per category; edge color: number of random networks with

larger number of rhythmic interactions between processes (blue:

N = 0; green: N#10); edge width: number of rhythmic interac-

tions. Processes, for which N#10 random networks have more

internal dynamic interactions than observed in the global

interaction network, were highlighted with a dark red border.

(TIF)

Figure S7 Protein Phosphatase 1 Modifies BMAL1 Abundance

(referring to Figure 7). (A) Systematic screen for new modulators of

CLOCK/BMAL1 transactivation. All CLOCK and BMAL1

interactors identified in our Y2H experiments and their paralogs

were co-transfected with CLOCK/BMAL1 together with an

artificial 6 E-box-Luciferase containing reporter. Normalization was

performed to Renilla-Luciferase signal. Shown is one representa-

tive result (n = 3; 6 s.d.) of three independent experiments. Among

new CLOCK/BMAL1 interactors RORs and PPP1CA showed

consistent suppression of CLOCK/BMAL1 transactivation (see

also Figure 7A, 7B), while increase of transactivation upon

coexpression of casein kinase 1a/d and WDR5 was not detected

in all three experiments (B) GSK3B affects BMAL1 stability. Effect

of GSK3B overexpression in U2OS cells also expressing either

BMAL1 or short-lived EGFP control (d4EGFP) fusion proteins in

the reporter construct. Left panel: protein stability index

representing the peak of the distribution of the ratio between

EGFP and DsRed fluorescence intensities (representative result of

three independent measurements; average 6 s.d.; n = 3 per

condition; ** p,0.001); Middle panel: Distribution plots of the

ratio EGFP to DsRed fluorescence (average 6 s.d.; n = 3 per

condition). Right panel: Representative green fluorescence (y-axis)

vs. red fluorescence (x-axis) dotplots of flow cytometry analysis.

Red gates encircle cell distributions of indicated ORF without

addition of GSK3B. (C) Similar experiment as described in (B)

with U2OS cells overexpressing PPP1CA or control (see also

Figure 7B). (D) PPP1CA overexpression efficiency in lentivirally

transduced U2OS cells (see also Figure 7E and 7F).

(TIF)

Table S1 List of PPIs among circadian clock proteins as well as

enrichment and extension of the circadian PPI network (refers to

Figure 1 and Figure 2).

(XLSX)

Table S2 Circadian phenotypes of oscillating U2OS cells upon

RNAi-mediated downregulation of genes in the PPI network

neighborhood (refers to Figure 3).

(XLSX)

Table S3 List of rhythmic PPIs within the circadian network as

well as ‘hub’ analysis (refers to Figure 4B and Figure S5).

(XLSX)

Table S4 Dynamic degree and phenotypic score of circadian

components (refers to Figure 5).

(XLSX)

Table S5 Coupling of biological processes via predicted dynamic

PPIs (refers to Figure 6).

(XLSX)

Text S1 Supporting materials and methods.

(DOCX)
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