229 research outputs found

    Multilevel resonant tunneling in the presence of flux and charge noise

    Full text link
    Macroscopic resonant tunneling (MRT) in flux qubits is an important experimental tool for extracting information about noise produced by a qubit's surroundings. Here we present a detailed derivation of the MRT signal in the RF-SQUID flux qubit allowing for effects of flux and charge fluctuations on the interwell and intrawell transitions in the system. Taking into consideration transitions between the ground state in the initial well and excited states in the target well enable us to characterize both flux and charge noise source affecting the operation of the flux qubit. The MRT peak is formed by the dominant noise source affecting specific transition, with flux noise determining the lineshape of the ground to ground tunneling, whereas charge noise reveals itself as additional broadening of the ground to excited peak.Comment: 16 pages, 2 figure

    Theory of weak continuous measurements in a strongly driven quantum bit

    Full text link
    Continuous spectroscopic measurements of a strongly driven superconducting qubit by means of a high-quality tank circuit (a linear detector) are under study. Output functions of the detector, namely, a spectrum of voltage fluctuations and an impedance, are expressed in terms of the qubit spectrum and magnetic susceptibility. The nonequilibrium spectrum of the current fluctuations in the qubit loop and the linear response function of the driven qubit coupled to a heat bath are calculated with Bloch-Redfield and rotating wave approximations. Backaction effects of the qubit on the tank and the tank on the qubit are analyzed quantitatively. We show that the voltage spectrum of the tank provides detailed information about a frequency and a decay rate of Rabi oscillations in the qubit. It is found that both an efficiency of spectroscopic measurement and measurement-induced decoherence of the qubit demonstrate a resonant behaviour as the Rabi frequency approaches the resonant frequency of the tank. We determine conditions when the spectroscopic observation of the Rabi oscillations in the flux qubit with the tank circuit can be considered as a weak continuous quantum measurement.Comment: 28 page

    Decoherence and Relaxation of a Quantum Bit in the Presence of Rabi Oscillations

    Full text link
    Dissipative dynamics of a quantum bit driven by a strong resonant field and interacting with a heat bath is investigated. We derive generalized Bloch equations and find modifications of the qubit's damping rates caused by Rabi oscillations. Nonequilibrium decoherence of a phase qubit inductively coupled to a LC-circuit is considered as an illustration of the general results. It is argued that recent experimental results give a clear evidence of effective suppression of decoherence in a strongly driven flux qubit.Comment: 14 pages; misprints correcte

    Electron Spin Relaxation in a Semiconductor Quantum Well

    Full text link
    A fully microscopic theory of electron spin relaxation by the D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor quantum well with a magnetic field applied in the growth direction of the well. We derive the Bloch equations for an electron spin in the well and define microscopic expressions for the spin relaxation times. The dependencies of the electron spin relaxation rate on the lowest quantum well subband energy, magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review

    Probing flux and charge noise with macroscopic resonant tunneling

    Full text link
    We report on measurements of flux and charge noise in an rf-SQUID flux qubit using macroscopic resonant tunneling (MRT). We measure rates of incoherent tunneling from the lowest energy state in the initial well to the ground and first excited states in the target well. The result of the measurement consists of two peaks. The first peak corresponds to tunneling to the ground state of the target well, and is dominated by flux noise. The second peak is due to tunneling to the excited state and is wider due to an intrawell relaxation process dominated by charge noise. We develop a theoretical model that allows us to extract information about flux and charge noise within one experimental setup. The model agrees very well with experimental data over a wide dynamic range and provides parameters that characterize charge and flux noise.Comment: 11 pages, 5 figure

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore