200 research outputs found

    The mito-QC reporter for quantitative mitophagy assessment in primary retinal ganglion cells and experimental glaucoma models

    Get PDF
    This research was funded by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) PGC2018-098557-B-I00 and European Union’s Horizon 2020 research and innovation programme under grant agreement No 765912. BVZ is a recipient of PhD contract from the Fundación Tatiana Pérez de Guzmán el Bueno (Spain), PT from H2020-MSCA-ITN-2017, NRM a Juan de la Cierva Grant from Ministerio Ciencia e Innovación (Spain) and KB from DFG (Deutsche Forschungsgemeinschaft, Germany, 6619/1-1).Mitochondrial damage plays a prominent role in glaucoma. The only way cells can degrade whole mitochondria is via autophagy, in a process called mitophagy. Thus, studying mitophagy in the context of glaucoma is essential to understand the disease. Up to date limited tools are available for analyzing mitophagy in vivo. We have taken advantage of the mito-QC reporter, a recently generated mouse model that allows an accurate mitophagy assessment to fill this gap. We used primary RGCs and retinal explants derived from mito-QC mice to quantify mitophagy activation in vitro and ex vivo. We also analyzed mitophagy in retinal ganglion cells (RGCs), in vivo, using different mitophagy inducers, as well as after optic nerve crush (ONC) in mice, a commonly used surgical procedure to model glaucoma. Using mito-QC reporter we quantified mitophagy induced by several known inducers in primary RGCs in vitro, ex vivo and in vivo. We also found that RGCs were rescued from some glaucoma relevant stress factors by incubation with the iron chelator deferiprone (DFP). Thus, the mito-QC reporter-based model is a valuable tool for accurately analyzing mitophagy in the context of glaucoma.publishersversionpublishe

    The neck region of the C-type lectin DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen presenting cells

    Get PDF
    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infectio

    Paquinimod reduces skin fibrosis in tight skin 1 mice, an experimental model of systemic sclerosis

    Get PDF
    AbstractBackgroundSystemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune dysfunction. A hallmark of SSc is the excessive accumulation of extracellular matrix in the skin and in internal organs. There is a high and unmet medical need for novel therapies in this disease. The pathogenesis of SSc is complex and still poorly understood, but the innate immune system has emerged as an important factor in the disease. SSc patients show increased numbers of macrophages/monocytes in the blood and in the skin compared to healthy individuals and these cells are important sources of profibrotic cytokines and chemokines. Paquinimod belongs to a class of orally active quinoline-3-carboxamide (quinoline) derivatives with immunomodulatory properties and has shown effects in several models of autoimmune/inflammatory disorders. Paquinimod is currently in clinical development for treatment of SSc. The immunomodulatory effects of paquinimod is by targeting the myeloid cell compartment via the S100A9 protein.ObjectiveIn this study we investigate whether targeting of myeloid cells by paquinimod can effect disease development in an experimental model of SSc, the tight skin 1 (Tsk-1) mouse model.MethodsSeven weeks old female B6.Cg-Fbn1Tsk/J (Tsk-1) mice were treated with vehicle or paquinimod at the dose of 5 or 25mg/kg/day in the drinking water for 8 weeks. The effect of paquinimod on the level of skin fibrosis and on different subpopulations within the myeloid cell compartment in skin biopsies were evaluated by using histology, immunohistochemisty, a hydroxyproline assay and real-time PCR. Furthermore, the level of IgG in serum from treated animals was also analysed. The statistical analyses were performed using Mann-Whitney nonparametric two tailed rank test.ResultsThe results show that treatment with paquinimod reduces skin fibrosis measured as reduction of skin thickness and decreased number of myofibroblasts and total hydroxyproline content. The effect on fibrosis was associated with a polarization of macrophages in the skin from a pro-fibrotic M2 to a M1 phenotype. Paquinimod treatment also resulted in a reduced TGFβ-response in the skin and an abrogation of the increased auto-antibody production in this SSc model.ConclusionsPaquinimod reduces skin fibrosis in an experimental model of SSc, and this effect correlates with local and systemic effects on the immune system

    Image based machine learning for identification of macrophage subsets

    Get PDF
    Macrophages play a crucial rule in orchestrating immune responses against pathogens and foreign materials. Macrophages have remarkable plasticity in response to environmental cues and are able to acquire a spectrum of activation status, best exemplified by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at the two ends of the spectrum. Characterisation of M1 and M2 subsets is usually carried out by quantification of multiple cell surface markers, transcription factors and cytokine profiles. These approaches are time consuming, require large numbers of cells and are resource intensive. In this study, we used machine learning algorithms to develop a simple and fast imaging-based approach that enables automated identification of different macrophage functional phenotypes using their cell size and morphology. Fluorescent microscopy was used to assess cell morphology of different cell types which were stained for nucleus and actin distribution using DAPI and phalloidin respectively. By only analysing their morphology we were able to identify M1 and M2 phenotypes effectively and could distinguish them from naïve macrophages and monocytes with an average accuracy of 90%. Thus we suggest high-content and automated image analysis can be used for fast phenotyping of functionally diverse cell populations with reasonable accuracy and without the need for using multiple markers

    RUNX3 Regulates Intercellular Adhesion Molecule 3 (ICAM-3) Expression during Macrophage Differentiation and Monocyte Extravasation

    Get PDF
    The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and αdβ2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation

    Mice lacking endoglin in macrophages show an impaired immune response

    Get PDF
    24 p.-9 fig.-1 tab. Ojeda Fernández, Luisa et al.Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-OslerWeber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.This work was funded by: Ministerio de Economía y Competitividad of Spain (SAF2011-23475 to LMB; SAF2013-43421-R and SAF2010- 19222 to CB.Peer reviewe

    CD38 promotes pristane-induced chronic inflammation and increases susceptibility to experimental lupus by an apoptosis-driven and TRPM2-dependent mechanism

    Get PDF
    In this study, we investigated the role of CD38 in a pristane-induced murine model of lupus. CD38-deficient (Cd38-/-) but not ART2-deficient (Art2-/-) mice developed less severe lupus compared to wild type (WT) mice, and their protective phenotype consisted of (i) decreased IFN-I-stimulated gene expression, (ii) decreased numbers of peritoneal CCR2hiLy6Chi inflammatory monocytes, TNF-α-producing Ly6G+ neutrophils and Ly6Clo monocytes/macrophages, (iii) decreased production of anti-single-stranded DNA and anti-nRNP autoantibodies, and (iv) ameliorated glomerulonephritis. Cd38-/- pristane-elicited peritoneal exudate cells had defective CCL2 and TNF-α secretion following TLR7 stimulation. However, Tnf-α and Cxcl12 gene expression in Cd38-/- bone marrow (BM) cells was intact, suggesting a CD38-independent TLR7/TNF-α/CXCL12 axis in the BM. Chemotactic responses of Cd38-/- Ly6Chi monocytes and Ly6G+ neutrophils were not impaired. However, Cd38-/- Ly6Chi monocytes and Ly6Clo monocytes/macrophages had defective apoptosis-mediated cell death. Importantly, mice lacking the cation channel TRPM2 (Trpm2-/-) exhibited very similar protection, with decreased numbers of PECs, and apoptotic Ly6Chi monocytes and Ly6Clo monocytes/macrophages compared to WT mice. These findings reveal a new role for CD38 in promoting aberrant inflammation and lupus-like autoimmunity via an apoptosis-driven mechanism. Furthermore, given the implications of CD38 in the activation of TRPM2, our data suggest that CD38 modulation of pristane-induced apoptosis is TRPM2-dependent.We would like to thank Dr. Yasuo Mori for providing the Tr pm 2−/− mice, Clara Sánchez for animal husbandry at the IPBLN-CSIC Animal Facility, and Thomas S. Simpler and Uma Mudunuru for animal husbandry at the University of Alabama at Birmingham (UAB). We would also like to thank Laura Montosa from the Centro de Instrumentación Cientifica (CIC) at the Universidad de Granada (UGR) for technical support with microscopy, as well as Mohamed Tassi and Ana Santos at CIC, UGR, and Sandra García-Jiménez, Victoria Romero-del-Amo, Gemma Palencia-López, and Samuel Ruiz-Santiago at Campus Formación Granada for tissue preparations, H&E staining, and other staining procedures. Work performed in the Sancho lab was supported in part by the European Commission in collaboration with the following Funding Agencies: (i) Junta de Andalucía (J.A.), Consejería Innovación Ciencia y Empresa y Consejería Educación y Ciencia, Project: PC08-CTS-04046 to J.S. and M.Z., and (ii) Ministerio de Economía y Competitividad (MINECO), Projects: SAF-2011-27261 to J.S. and M.Z. and SAF2014-55088-R to R.M. Work performed in the Lund lab was supported by funds provided by UAB.S

    Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2

    Get PDF
    BACKGROUND: Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. RESULTS: We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. CONCLUSIONS: Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0473-y) contains supplementary material, which is available to authorized users

    Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases

    Get PDF
    textabstractThe classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research

    Extracellular purine metabolism is the switchboard of immunosuppressive macrophages and a novel target to treat diseases with macrophage imbalances

    Get PDF
    If misregulated, macrophage (M)T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-M (GM-CSF)- and M colony-stimulating factor (M-CSF)-dependent Ms have dichotomous effects on T cell activity. While GM-CSF-dependent Ms show a highly stimulatory activity typical for M1 Ms, M-CSF-dependent Ms, marked by folate receptor (FR), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Ms in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FR+CD39+CD73+ Ms, which boosts adenosine production and curtails the dominance of proinflammatory Ms. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the M extracellular purine metabolism as a novel checkpoint in M cell fate decision-making and an attractive target to control pathological Ms in immune-mediated diseases.The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No 683356 - FOLSMART and from the Seventh Framework Program (FP7/2007-2013) under grant agreement NMP4-LA-2009-228827 NANOFOL. RP was supported by the Boehringer Ingelheim Fonds and the Ph.D. program Cell Communication in Health and Disease supported by the Austrian Science Fund (FWF). VL was supported by the FWF (P22908), VEGA (2/0063/14), and APVV (16-0452). JH received support from the Vienna Science and Technology Fund (WWTF) LS14-031.info:eu-repo/semantics/publishedVersio
    corecore