6,364 research outputs found

    Over 130 years of survival by a small, isolated population of Favia gravida corals at Ascension Island (South Atlantic)

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Frequency Offset Correction in a Software Defined HiperLAN/2 Demodulator using Preamble Section A

    Get PDF
    In our Software Defined Radio project we perform a feasibility study of a software defined radio for two communication standards: HiperLAN/2 and Bluetooth. In this paper the Matlab/Simulink implementation of the HiperLAN/2 demodulator for the demonstrator of the project is discussed, with special attention for the frequency offset corrector. This type of correction is necessary to prevent large bit error rates that are caused by inter-subcarrier interference. The method that is proposed in this paper uses preamble section A to estimate the frequency offset. Simulation results for an AWGN channel show that the method is capable of correcting frequency offsets up to the boundary defined in the standard [1]. It was observed that frequency offset correction using only preamble section A is sensitive to Āæfor exampleĀæ synchronization errors in case real-life analog front-end signals are used

    Modulation-Index Estimation in a Combined CPM/OFDM Receiver

    Get PDF
    In this paper we develop a blind modulation-index estimator for\ud a combined CPM/OFDMReceiver. The performance of the estimator\ud in an AWGN channel is assessed by simulation and analysis\ud and its suitability for our receiver is established

    A (Simplified) Bluetooth Maximum a Posteriori Probability (Map) Receiver

    Get PDF
    In our software-defined radio project, we aim at combining two standards luetooth and HIPERLAN/2. The HIPERLAN/2 receiver requires more computational power than Bluetooth. We choose to use this computational power also for Bluetooth and look for more advanced demodulation algorithms such as a maximum a posteriori probability (MAP) receiver. The paper discusses a simplified MAP receiver for Bluetooth GFSK signals. Laurent decomposition provides an orthogonal vector space for the MAP receiver. As the first Laurent waveform contains the most energy, we have used only this waveform for our (simplified) MAP receiver. This receiver requires a E/sub b//N/sub 0/ of about 11 dB for a BER of 10/sup -3/, required by the Bluetooth standard. This value is about 6 dB better than single bit demodulators. This performance is only met if the receiver has exact knowledge of the modulation index

    Undetected error probability for data services in a terrestrial DAB single frequency network

    Get PDF
    DAB (Digital Audio Broadcasting) is the European successor of FM radio. Besides audio services, other services such as traffic information can be provided.\ud An important parameter for data services is the probability of non-recognized or undetected errors in the system. To derive this probability, we propose a bound for the undetected error probability in CRC codes. In addition, results from measurements of a Single Frequency Network (SFN) in Amsterdam were used, where the University of Twente conducted a DAB field trial. The proposed error bound is compared with other error bounds from literature and the results are validated by simulations. Although the proposed bound is less tight than existing bounds, it requires no additional information about the CRC code such\ud as the weight distribution. Moreover, the DAB standard has been extended last year by an Enhanced Packet Mode (EPM) which provides extra protection for data services. An undetected error probability for this mode is also derived. In a realistic user scenario of 10 million users, a 8 kbit/s EPM sub channel can be considered as a system without any undetected errors (Pud = 6 Ā· 10āˆ’40). On\ud the other hand, in a normal data sub channel, only 110 packets with undetected errors are received on average each year in the whole system (Pud = 5 Ā· 10āˆ’13)

    A Real-Time GPP Software-Defined Radio Testbed for the Physical Layer of Wireless Standards

    Get PDF
    We present our contribution to the general-purpose-processor-(GPP)-based radio. We describe a baseband software-defined radio testbed for the physical layer of wireless LAN standards. All physical layer functions have been successfully mapped on a Pentium 4 processor that performs these functions in real time. The testbed consists of a transmitter PC with a DAC board and a receiver PC with an ADC board. In our project, we have implemented two different types of standards on this testbed, a continuous-phase-modulation-based standard, Bluetooth, and an OFDM-based standard, HiperLAN/2. However, our testbed can easily be extended to other standards, because the only limitation in our testbed is the maximal channel bandwidth of 20 MHz and of course the processing capabilities of the used PC. The transmitter functions require at most 714 M cycles per second and the receiver functions need 1225 M cycles per second on a Pentium 4 processor. In addition, baseband experiments have been carried out successfully

    The Front end of Software-Defined Radio: Possibilities and Challenges

    Get PDF
    The use of mobile telephony has shown a spectacular\ud growth in the last 10 years. A side effect of this rapid\ud growth is an excess of mobile system standards. Therefore,\ud the Software-Defined-Radio (SDR) concept is emerging as\ud a potential pragmatic solution: it aims to build flexible radio\ud systems, which are multi-service, multi-standard, multiband,\ud re-configurable and re-programmable, by software.\ud First, this paper presents a global overview of SDR.\ud Furthermore, it discusses several front-end architectures of\ud SDR. The goal of this project is to generate knowledge about\ud designing part of the functionality of SDR, implemented by\ud rapid prototyping strategies. The focus is on the front end\ud of SDR. The technological roadmap is taken into account to\ud evaluate several architectures
    • ā€¦
    corecore