19 research outputs found

    The inverse relationship between solar-induced fluorescence yield and photosynthetic capacity: Benefits for field phenotyping

    Get PDF
    Improving photosynthesis is considered a promising way to increase crop yield to feed a growing population. Realizing this goal requires non-destructive techniques to quantify photosynthetic variation among crop cultivars. Despite existing remote sensing-based approaches, it remains a question whether solar-induced fluorescence (SIF) can facilitate screening crop cultivars of improved photosynthetic capacity in plant breeding trials. Here we tested a hypothesis that SIF yield rather than SIF had a better relationship with the maximum electron transport rate (Jmax). Time-synchronized hyperspectral images and irradiance spectra of sunlight under clear-sky conditions were combined to estimate SIF and SIF yield, which were then correlated with ground-truth Vcmax and Jmax. With observations binned over time (i.e. group 1: 6, 7, and 12 July 2017; group 2: 31 July and 18 August 2017; and group 3: 24 and 25 July 2018), SIF yield showed a stronger negative relationship, compared with SIF, with photosynthetic variables. Using SIF yield for Jmax (Vcmax) predictions, the regression analysis exhibited an R2 of 0.62 (0.71) and root mean square error (RMSE) of 11.88 (46.86) μmol m-2 s-1 for group 1, an R2 of 0.85 (0.72) and RMSE of 13.51 (49.32) μmol m-2 s-1 for group 2, and an R2 of 0.92 (0.87) and RMSE of 15.23 (30.29) μmol m-2 s-1 for group 3. The combined use of hyperspectral images and irradiance measurements provides an alternative yet promising approach to characterization of photosynthetic parameters at plot level

    Emerging approaches to measure photosynthesis from the leaf to the ecosystem

    Get PDF
    Measuring photosynthesis is critical for quantifying and modeling leaf to regional scale productivity of managed and natural ecosystems. This review explores existing and novel advances in photosynthesis measurements that are certain to provide innovative directions in plant science research. First, we address gas exchange approaches from leaf to ecosystem scales. Leaf level gas exchange is a mature method but recent improvements to the user interface and environmental controls of commercial systems have resulted in faster and higher quality data collection. Canopy chamber and micrometeorological methods have also become more standardized tools and have an advanced understanding of ecosystem functioning under a changing environment and through long time series data coupled with community data sharing. Second, we review proximal and remote sensing approaches to measure photosynthesis, including hyperspectral reflectance- A nd fluorescence-based techniques. These techniques have long been used with aircraft and orbiting satellites, but lower-cost sensors and improved statistical analyses are allowing these techniques to become applicable at smaller scales to quantify changes in the underlying biochemistry of photosynthesis. Within the past decade measurements of chlorophyll fluorescence from earth-orbiting satellites have measured Solar Induced Fluorescence (SIF) enabling estimates of global ecosystem productivity. Finally, we highlight that stronger interactions of scientists across disciplines will benefit our capacity to accurately estimate productivity at regional and global scales. Applying the multiple techniques outlined in this review at scales from the leaf to the globe are likely to advance understanding of plant functioning from the organelle to the ecosystem

    Advances in field-based high-throughput photosynthetic phenotyping

    Get PDF
    Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis

    To have value, comparisons of high-throughput phenotyping methods need statistical tests of bias and variance

    Get PDF
    The gap between genomics and phenomics is narrowing. The rate at which it is narrowing, however, is being slowed by improper statistical comparison of methods. Quantification using Pearson’s correlation coefficient (r) is commonly used to assess method quality, but it is an often misleading statistic for this purpose as it is unable to provide information about the relative quality of two methods. Using r can both erroneously discount methods that are inherently more precise and validate methods that are less accurate. These errors occur because of logical flaws inherent in the use of r when comparing methods, not as a problem of limited sample size or the unavoidable possibility of a type I error. A popular alternative to using r is to measure the limits of agreement (LOA). However both r and LOA fail to identify which instrument is more or less variable than the other and can lead to incorrect conclusions about method quality. An alternative approach, comparing variances of methods, requires repeated measurements of the same subject, but avoids incorrect conclusions. Variance comparison is arguably the most important component of method validation and, thus, when repeated measurements are possible, variance comparison provides considerable value to these studies. Statistical tests to compare variances presented here are well established, easy to interpret and ubiquitously available. The widespread use of r has potentially led to numerous incorrect conclusions about method quality, hampering development, and the approach described here would be useful to advance high throughput phenotyping methods but can also extend into any branch of science. The adoption of the statistical techniques outlined in this paper will help speed the adoption of new high throughput phenotyping techniques by indicating when one should reject a new method, outright replace an old method or conditionally use a new method

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Biochemical acclimation, stomatal limitation and precipitationpatterns underlie decreases in photosynthetic stimulation of soybean(\u3ci\u3eGlycine max\u3c/i\u3e) at elevated [CO\u3csub\u3e2\u3c/sub\u3e] and temperatures under fully open airfield conditions

    Get PDF
    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivityis poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1)the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximumcarboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photo-system II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as wellas (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionallymanaged agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two grow-ing seasons with respect to Vc,maxand Jmax. However, elevated temperature significantly decreased Jmaxcontributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipi-tation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit ofelevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlightthe critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2])when trying to predict plant productivity in the context of climate change

    Fast, Nondestructive and Precise Biomass Measurements Are Possible Using Lidar-Based Convex Hull and Voxelization Algorithms

    No full text
    Light detection and ranging (lidar) scanning tools are available that can make rapid digital estimations of biomass. Voxelization and convex hull are two algorithms used to calculate the volume of the scanned plant canopy, which is correlated with biomass, often the primary trait of interest. Voxelization splits the scans into regular-sized cubes, or voxels, whereas the convex hull algorithm creates a polygon mesh around the outermost points of the point cloud and calculates the volume within that mesh. In this study, digital estimates of biomass were correlated against hand-harvested biomass for field-grown corn, broom corn, and energy sorghum. Voxelization (r = 0.92) and convex hull (r = 0.95) both correlated well with plant dry biomass. Lidar data were also collected in a large breeding trial with nearly 900 genotypes of energy sorghum. In contrast to the manual harvest studies, digital biomass estimations correlated poorly with yield collected from a forage harvester for both voxel count (r = 0.32) and convex hull volume (r = 0.39). However, further analysis showed that the coefficient of variation (CV, a measure of variability) for harvester-based estimates of biomass was greater than the CV of the voxel and convex-hull-based biomass estimates, indicating that poor correlation was due to harvester imprecision, not digital estimations. Overall, results indicate that the lidar-based digital biomass estimates presented here are comparable or more precise than current approaches

    Fast Phenomics in Vineyards: Development of GRover, the Grapevine Rover, and LiDAR for Assessing Grapevine Traits in the Field

    No full text
    This paper introduces GRover (the grapevine rover), an adaptable mobile platform for the deployment and testing of proximal imaging sensors in vineyards for the non-destructive assessment of trunk and cordon volume and pruning weight. A SICK LMS-400 light detection and ranging (LiDAR) radar mounted on GRover was capable of producing precise (±3 mm) 3D point clouds of vine rows. Vineyard scans of the grapevine variety Shiraz grown under different management systems at two separate locations have demonstrated that GRover is able to successfully reproduce a variety of vine structures. Correlations of pruning weight and vine wood (trunk and cordon) volume with LiDAR scans have resulted in high coefficients of determination (R2 = 0.91 for pruning weight; 0.76 for wood volume). This is the first time that a LiDAR of this type has been extensively tested in vineyards. Its high scanning rate, eye safe laser and ability to distinguish tissue types make it an appealing option for further development to offer breeders, and potentially growers, quantified measurements of traits that otherwise would be difficult to determine.This project was partly funded by Australia’s grape growers and winemakers through their investment body Wine Australia with matching funds from the Australian Federal Government. Additional funds for this work were provided by Commonwealth Scientific and Industrial Research Organisation (CSIRO).Peer reviewe

    DataSheet_2_To have value, comparisons of high-throughput phenotyping methods need statistical tests of bias and variance.csv

    No full text
    The gap between genomics and phenomics is narrowing. The rate at which it is narrowing, however, is being slowed by improper statistical comparison of methods. Quantification using Pearson’s correlation coefficient (r) is commonly used to assess method quality, but it is an often misleading statistic for this purpose as it is unable to provide information about the relative quality of two methods. Using r can both erroneously discount methods that are inherently more precise and validate methods that are less accurate. These errors occur because of logical flaws inherent in the use of r when comparing methods, not as a problem of limited sample size or the unavoidable possibility of a type I error. A popular alternative to using r is to measure the limits of agreement (LOA). However both r and LOA fail to identify which instrument is more or less variable than the other and can lead to incorrect conclusions about method quality. An alternative approach, comparing variances of methods, requires repeated measurements of the same subject, but avoids incorrect conclusions. Variance comparison is arguably the most important component of method validation and, thus, when repeated measurements are possible, variance comparison provides considerable value to these studies. Statistical tests to compare variances presented here are well established, easy to interpret and ubiquitously available. The widespread use of r has potentially led to numerous incorrect conclusions about method quality, hampering development, and the approach described here would be useful to advance high throughput phenotyping methods but can also extend into any branch of science. The adoption of the statistical techniques outlined in this paper will help speed the adoption of new high throughput phenotyping techniques by indicating when one should reject a new method, outright replace an old method or conditionally use a new method.</p

    DataSheet_3_To have value, comparisons of high-throughput phenotyping methods need statistical tests of bias and variance.csv

    No full text
    The gap between genomics and phenomics is narrowing. The rate at which it is narrowing, however, is being slowed by improper statistical comparison of methods. Quantification using Pearson’s correlation coefficient (r) is commonly used to assess method quality, but it is an often misleading statistic for this purpose as it is unable to provide information about the relative quality of two methods. Using r can both erroneously discount methods that are inherently more precise and validate methods that are less accurate. These errors occur because of logical flaws inherent in the use of r when comparing methods, not as a problem of limited sample size or the unavoidable possibility of a type I error. A popular alternative to using r is to measure the limits of agreement (LOA). However both r and LOA fail to identify which instrument is more or less variable than the other and can lead to incorrect conclusions about method quality. An alternative approach, comparing variances of methods, requires repeated measurements of the same subject, but avoids incorrect conclusions. Variance comparison is arguably the most important component of method validation and, thus, when repeated measurements are possible, variance comparison provides considerable value to these studies. Statistical tests to compare variances presented here are well established, easy to interpret and ubiquitously available. The widespread use of r has potentially led to numerous incorrect conclusions about method quality, hampering development, and the approach described here would be useful to advance high throughput phenotyping methods but can also extend into any branch of science. The adoption of the statistical techniques outlined in this paper will help speed the adoption of new high throughput phenotyping techniques by indicating when one should reject a new method, outright replace an old method or conditionally use a new method.</p
    corecore