134 research outputs found
Electron-donor function of methanofullerenes in donor-acceptor bulk heterojunction systems
Electron-donor function of methanofullerenes (MFs) in bulk heterojunction systems is demonstrated by the combination of MFs with the electron-transporting -system that has a much higher electron affinity than MFs
La fundación de la Madrasa al-Adāb por la Asociación de ulemas musulmanes argelinos en la ciudad de Hennaya (Tremecén) en 1950
A biphenyl-fused BODIPY was synthesized through a facile oxidative cyclization of peripheral aryl-substituents at the β-position of the BODIPY unit. The extended π-system of the fused BODIPY induces near-infrared (NIR) absorption and strong π–π interactions in the solid state. These features are beneficial for the application of the dye as a functional material. The biphenyl-fused BODIPY dye was demonstrated to exhibit photocurrent conversion ability on the basis of its <i>n</i>-type semiconducting property
Innovative solutions to sticky situations: Antiadhesive strategies for treating bacterial infections
ABSTRACT
Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.</jats:p
Directed assembly of optoelectronically active alkyl-<i>π</i>-conjugated molecules by adding <i>n</i>-alkanes or <i>π</i>-conjugated species
Supramolecular assembly can yield ordered structures by taking advantage of the cumulative effect of multiple non-covalent interactions between adjacent molecules. The thermodynamic origin of many self-assembled structures in water is the balance between the hydrophilic and hydrophobic segments of the molecule. Here, we show that this approach can be generalized to use solvophobic and solvophilic segments of fully hydrophobic alkylated fullerene molecules. Addition of n-alkanes results in their assembly--due to the antipathy of C60 towards n-alkanes--into micelles and hexagonally packed gel-fibres containing insulated C60 nanowires. The addition of pristine C60 instead directs the assembly into lamellar mesophases by increasing the proportion of π-conjugated material in the mixture. The assembled structures contain a large fraction of optoelectronically active material and exhibit comparably high photoconductivities. This method is shown to be applicable to several alkyl-π-conjugated molecules, and can be used to construct organized functional materials with π-conjugated sections
Solution phase epitaxial self-assembly and high charge-carrier mobility nanofibers of semiconducting molecular gelators
Trithienylenevinylenes having amide end functional groups form supramolecular gels in nonpolar solvents, comprised of self-assembled nanowires. These gels exhibit the unique property of solution phase epitaxy leading to the alignment of fibers on mica surface. FP-TRMC studies revealed high charge carrier mobility for xerogels from decane-chloroform whereas films obtained from chloroform solutions showed less mobility, highlighting the role of self-assembly and gelation on the electronic properties of semiconducting molecular gelators. This study opens the window for a new class of conducting gelators which may find wide application in organic electronic devices
- …