761 research outputs found
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
CeRA-eSP: Code-Expanded Random Access to Enhance Success Probability of Massive MTC
With the growing interest in the Internet of Things (IoT), research on massive machine-type communication (mMTC) services is being actively promoted. Because mMTC services are required to serve a large number of devices simultaneously, a lack of resources during initial access can be a significant problem when providing mMTC services in cellular networks. Various studies on efficient preamble transmission have been conducted to solve the random access problem of mMTC services. However, supporting a large number of devices simultaneously with limited resources is a challenging problem. In this study, we investigate code-expanded random access (CeRA), which extends the limited preamble resources to the code domain to decrease the high collision rate. To solve the existing CeRA phantom codeword and physical uplink shared channel (PUSCH) resource shortage problems, we propose an optimal preamble codeword set selection algorithm based on mathematical analysis. The simulation results indicate that the proposed code-expanded random access scheme to enhance success probability (CeRA-eSP) achieves a higher random access success rate with a lower access delay compared to the existing random access schemes
Polymer Lung Surfactants Attenuate Direct Lung Injury in Mice
If not properly managed, acute lung injuries, either
through direct
or indirect causes, have the potential to present serious risk for
many patients worldwide. One of the mechanisms for the transition
from acute lung injury (ALI) to the more serious acute respiratory
distress syndrome (ARDS) is the deactivation of the native lung surfactant
by injury-induced infiltrates to the alveolar space. Currently, there
are no surfactant replacement therapies that are used to treat ALI
and subsequent ARDS. In this paper, we present an indepth efficacy
study of using a novel polymer lung surfactant (PLS, composed of poly(styrene-block-ethylene glycol) (PS-PEG) block copolymer micelles),
which has unique properties compared to other tested surfactant replacements,
in two different mouse models of lung injury. The results demonstrate
that pharyngeal administration of PLS after the instillation of either
acid (HCl) or lipopolysaccharide (LPS) can decrease the severity of
lung injury as measured by multiple injury markers
Redox-Active Functional Electrolyte for High-Performance Seawater Batteries
Rechargeable seawater batteries have gained recognition as key sustainable electrochemical systems by employing the near-infinite and eco-friendly catholyte seawater. However, their practical applications have been limited owing to the low chemical and electrochemical stability of the anode component. Herein, a stability-secured approach was developed by using sodium-biphenyl-dimethoxyethane solution as a redox-active functional anolyte for high-performance seawater batteries. This anolyte system shows high electrochemical stability, superior cycle performance, and cost-effectiveness over conventional electrolyte systems
Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities
Abstract Understanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups. Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers. SXL breaks through the previously mentioned barriers, enabling microgram-scale TR studies of both irreversible and reversible reactions of even a non-photoactive protein. We demonstrate its versatility in studying a wide range of biological reactions, highlighting its potential as a flexible and multi-dimensional assay framework for kinetic and structural characterization. Leveraging X-ray free-electron lasers and micro-focused X-ray pulses promises further enhancements in both temporal resolution and minimizing sample quantity. SXL offers unprecedented insights into the structural and kinetic landscapes of molecular actions, paving the way for a deeper understanding of complex biological processes
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
- …