1,425 research outputs found

    Representations of measurable sets in computable measure theory

    Full text link
    This article is a fundamental study in computable measure theory. We use the framework of TTE, the representation approach, where computability on an abstract set X is defined by representing its elements with concrete "names", possibly countably infinite, over some alphabet {\Sigma}. As a basic computability structure we consider a computable measure on a computable σ\sigma-algebra. We introduce and compare w.r.t. reducibility several natural representations of measurable sets. They are admissible and generally form four different equivalence classes. We then compare our representations with those introduced by Y. Wu and D. Ding in 2005 and 2006 and claim that one of our representations is the most useful one for studying computability on measurable functions

    Demodulation and Detection Schemes for a Memoryless Optical WDM Channel

    Get PDF
    It is well known that matched filtering and sampling (MFS) demodulation together with minimum Euclidean distance (MD) detection constitute the optimal receiver for the additive white Gaussian noise channel. However, for a general nonlinear transmission medium, MFS does not provide sufficient statistics, and therefore is suboptimal. Nonetheless, this receiver is widely used in optical systems, where the Kerr nonlinearity is the dominant impairment at high powers. In this paper, we consider a suite of receivers for a two-user channel subject to a type of nonlinear interference that occurs in wavelength-division-multiplexed channels. The asymptotes of the symbol error rate (SER) of the considered receivers at high powers are derived or bounded analytically. Moreover, Monte-Carlo simulations are conducted to evaluate the SER for all the receivers. Our results show that receivers that are based on MFS cannot achieve arbitrary low SERs, whereas the SER goes to zero as the power grows for the optimal receiver. Furthermore, we devise a heuristic demodulator, which together with the MD detector yields a receiver that is simpler than the optimal one and can achieve arbitrary low SERs. The SER performance of the proposed receivers is also evaluated for some single-span fiber-optical channels via split-step Fourier simulations

    Immediate dilation of a tight or stenotic cervix by intra-procedural administration of hyoscine butylbromide: A clinical trial

    Get PDF
    Background: Cervical dilation is indicated prior to performing various gynecological procedures. However, gynecologists are at times confronted with a stenotic or tight cervix, resistant to dilation. This can be problematic particularly when cervical ripening has not been attempted hours before the start of the procedure. Objective: The objective of this study is to investigate the efficacy of administration of hyoscine butylbromide for cervical dilation for immediate dilation of the tight or stenotic cervix. Materials and Methods: In this clinical trial study, a population of 40 women, aged 20-70 yr with stenotic cervix, evidenced by resistance to pass dilator #2 through their cervical canal were compared. Cervical patency was assessed 10 min following intracervical canal instillation of hyoscine butylbromide. Results: Cervical width of 57.5% of patients became wider, as evidenced by passage of the number 4 Hegar dilator through the cervical canal without resistance. Independent T-tests did not reveal any statistically significant difference between the two groups based on their age. Fisher Exact test revealed a statistically significant difference between the two groups based on the prior route of delivery, with a more statistically significant response in patients who had vaginal deliveries. Conclusion: Intra-cervical canal instillation of hyoscine butylbromide is effective in immediate dilation of the tight or stenotic cervix during intra-uterine procedures

    Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics and Mechanism

    Get PDF
    This dissertation involves several hydrogenolysis reactions but is mainly focused on hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of 2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of research for some time. Here, we used a Pd/C catalyst to study this reaction though rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2/D2 kinetic isotope effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The kinetics data are in agreement with similar systems reported before and follow a first-order dependence on chlorobenzene, half order for hydrogen and an inverse first order with respect to HCl. These data suggest a mechanism that involves C-Cl cleavage in the rate controlling step preceded by adsorption of reactant and followed by desorption of products from the surface. The derived rate expression was used in a microkinetic model to predict the observed rates of this reaction. This model successfully captures the experimental trends observed in the kinetic studies. Moreover, motivated by the applications of in situ spectroscopic techniques, the detailed design of an FTIR cell which enables both steady state and transient studies to measure kinetics and investigate the mechanism of reactions at a molecular level, is included. Hydrodeoxygenation of 2-furancarboxylic acid was investigated to produce delta-valerolactone, which represents a series of functionalized lactone molecules that have a potential to be used in prospective polymers. Motivated by excellent HDO activity reported for Ru/TiO2 catalysts, and with the aim of taking advantage of the built-in bifunctionality of this catalyst when introduced to hydrogen, we have used Ru/TiO2 toquantitatively synthesize the functionalized lactone monomer (FDHL). The focus of our work has been to optimize process parameters, including temperature, solvent, catalyst support, metal loading, weight of the catalyst and reaction time, to achieve an acceptable yield for the target product. The yield of 53% to -hexalactone (DHL) for a simple 5-methyl-2-furancarboxylic acid was significantly greater than the previous reports

    D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    Get PDF
    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning

    Other Mothers, Other Sons

    Get PDF

    A hybrid Delphi-SWOT paradigm for oil and gas pipeline strategic planning in Caspian Sea basin

    Get PDF
    The Caspian Sea basin holds large quantities of both oil and natural gas that could help meet the increasing global demand for energy resources. Consequently, the oil and gas potential of the region has attracted the attention of the international oil and gas industry. The key to realizing the energy producing potential of the region is the development of transnational export routes to take oil and gas from the landlocked Caspian Sea basin to world markets. The evaluation and selection of alternative transnational export routes is a complex multi-criteria problem with conflicting objectives. The decision makers (DMs) are required to consider a vast amount of information concerning internal strengths and weaknesses of the alternative routes as well as external opportunities and threats to them. This paper presents a hybrid model that combines strength, weakness, opportunity and threat (SWOT) analysis with the Delphi metho
    corecore