4,415 research outputs found

    Parallel processors and nonlinear structural dynamics algorithms and software

    Get PDF
    An explicit-explicit subcycling procedure for the finite element analysis of structural dynamics is developed. This procedure has relaxed the usual constraint of requiring integer time step ratios for adjacent nodal groups. This allows for greater advantage to be taken of local stability criteria, and thus improves the efficiency of the explicit time integrator. Example problems are included to demonstrate the accuracy and stability of the method

    Parallel processors and nonlinear structural dynamics algorithms and software

    Get PDF
    A nonlinear structural dynamics finite element program was developed to run on a shared memory multiprocessor with pipeline processors. The program, WHAMS, was used as a framework for this work. The program employs explicit time integration and has the capability to handle both the nonlinear material behavior and large displacement response of 3-D structures. The elasto-plastic material model uses an isotropic strain hardening law which is input as a piecewise linear function. Geometric nonlinearities are handled by a corotational formulation in which a coordinate system is embedded at the integration point of each element. Currently, the program has an element library consisting of a beam element based on Euler-Bernoulli theory and trianglar and quadrilateral plate element based on Mindlin theory

    On the stability of a class of implicit algorithms for nonlinear structural dynamics

    Get PDF
    Stability in energy for the Newmark beta-family of time integration operators for nonlinear material problems is examined. It is shown that the necessary and sufficient conditions for unconditional stability are equivalent to those predicted by Fourier methods for linear problems

    Explicit, implicit, and hybrid methods

    Get PDF
    Time integration methods can be separated into two groups: explicit and implicit. Methods which do not involve the solution of any algebraic equations are called explicit, while those that require the solution of equations are called implicit. The relative advantages and disadvantages of explicit and implicit methods are summarized. The major trend in the past decade of research was to use hybrization methods to take advantage of the complementary nature of the positive attributes of explicit and implicit integration. These trends are briefly discussed

    Probabilistic finite elements

    Get PDF
    In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given

    Efficient linear and nonlinear heat conduction with a quadrilateral element

    Get PDF
    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems

    Probabilistic finite elements for fatigue and fracture analysis

    Get PDF
    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter

    Finite Element Quadrature of Regularized Discontinuous and Singular Level Set Functions in 3D Problems

    Get PDF
    Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance with respect to the discontinuity interface are exploited. Tornberg and Engquist (Journal of Scientific Computing, 2003,19: 527-552) proved that the use of compact support weight function is not suitable because it leads to errors that do not vanish for decreasing mesh size. They proposed the adoption of non-compact support weight functions. In the present contribution, the relationship between the Fourier transform of the weight functions and the accuracy of the regularization procedure is exploited. The proposed regularized approach was implemented in the eXtended Finite Element Method. As a three-dimensional example, we study a slender solid characterized by an inclined interface across which the displacement is discontinuous. The accuracy is evaluated for varying position of the discontinuity interfaces with respect to the underlying mesh. A procedure for the choice of the regularization parameters is propose

    Corotational velocity strain formulations for nonlinear analysis of beams and axisymmetric shells

    Get PDF
    Finite element formulations for large strain, large displacement problems are formulated using a kinematic description based on the corotational components of the velocity strain. The corotational components are defined in terms of a system that rotates with each element and approximates the rotation of the material. To account for rotations of the material relative to this element system, extra terms are introduced in the velocity strain equations. Although this formulation is incremental, in explicitly integrated transient problems it compares very well with formulations that are not
    corecore