2,162 research outputs found

    Density dependent gauge field inducing emergent SSH physics, solitons and condensates in a discrete nonlinear Schr\"odinger equation

    Full text link
    We investigate a discrete non-linear Schr\"odinger equation with dynamical, density-difference-dependent, gauge fields. We find a ground-state transition from a plane wave condensate to a localized soliton state as the gauge coupling is varied. Interestingly we find a regime in which the condensate and soliton are both stable. We identify an emergent chiral symmetry, which leads to the existence of a symmetry protected zero energy edge mode. The emergent chiral symmetry relates low and high energy solitons. These states indicate that the interaction acts both repulsively and attractively

    Animal, Human, and \u3csup\u3e23\u3c/sup\u3eNa MRI Imaging Evidence for the Negative Impact of High Dietary Salt in Children

    Get PDF
    Purpose of the Review: Conditions typically prevalent in adults such as hypertension, kidney stones, osteoporosis, and chronic kidney disease are increasing among adolescents and young adults (AYA). The purpose of this review is to describe the association of these conditions to a high salt diet among pediatric patients. Recent Findings: We present animal, human, and 23Na MRI evidence associated with the negative impact of high dietary salt in children. Special focus is placed on novel 23Na MRI imaging which reveals the important concept of a third compartment for sodium storage in soft tissue. Finally, we make recommendations on who should not be on a low salt diet. Summary: A high salt intake predisposes children and AYA to considerable morbidity. We exhort the reader to engage in advocacy efforts to curve the incidence and prevalence of high salt-related life-limiting conditions

    Solution Structure of a CUE-Ubiquitin Complex Reveals a Conserved Mode of Ubiquitin Binding

    Get PDF
    AbstractMonoubiquitination serves as a regulatory signal in a variety of cellular processes. Monoubiquitin signals are transmitted by binding to a small but rapidly expanding class of ubiquitin binding motifs. Several of these motifs, including the CUE domain, also promote intramolecular monoubiquitination. The solution structure of a CUE domain of the yeast Cue2 protein in complex with ubiquitin reveals intermolecular interactions involving conserved hydrophobic surfaces, including the Leu8-Ile44-Val70 patch on ubiquitin. The contact surface extends beyond this patch and encompasses Lys48, a site of polyubiquitin chain formation. This suggests an occlusion mechanism for inhibiting polyubiquitin chain formation during monoubiquitin signaling. The CUE domain shares a similar overall architecture with the UBA domain, which also contains a conserved hydrophobic patch. Comparative modeling suggests that the UBA domain interacts analogously with ubiquitin. The structure of the CUE-ubiquitin complex may thus serve as a paradigm for ubiquitin recognition and signaling by ubiquitin binding proteins

    SVCollector: Optimized sample selection for cost-efficient long-read population sequencing

    Get PDF
    An increasingly important scenario in population genetics is when a large cohort has been genotyped using a low-resolution approach (e.g. microarrays, exome capture, short-read WGS), from which a few individuals are selected for resequencing using a more comprehensive approach, especially long-read sequencing. The subset of individuals selected should ensure that the captured genetic diversity is fully representative and includes variants across all subpopulations. For example, human variation has historically been focused on individuals with European ancestry, but this represents a small fraction of the overall diversity. To address this goal, SVCollector ( https://github.com/fritzsedlazeck/SVCollector ) identifies the optimal subset of individuals for resequencing. SVCollector analyzes a population-level VCF file from a low resolution genotyping study. It then computes a ranked list of samples that maximizes the total number of variants present from a subset of a given size. To solve this optimization problem, SVCollector implements a fast greedy heuristic and an exact algorithm using integer linear programming. We apply SVCollector on simulated data, 2504 human genomes from the 1000 Genomes Project, and 3024 genomes from the 3K Rice Genomes Project and show the rankings it computes are more representative than widely used naive strategies. Notably, we show that when selecting an optimal subset of 100 samples in these two cohorts, SV-Collector identifies individuals from every subpopulation while naive methods yield an unbalanced selection. Finally, we show the number of variants present in cohorts of different sizes selected using this approach follows a power-law distribution that is naturally related to the population genetic concept of the allele frequency spectrum, allowing us to estimate the diversity present with increasing numbers of samples

    Transgenic swine lungs expressing human cd59 are protected from injury in a pig-to-human model of xenotransplantation

    Get PDF
    AbstractBackground: Pulmonary xenotransplantation is currently limited by hyperacute rejection mediated in part by xenoreactive natural antibody and complement. Transgenic swine organs that express the human complement regulatory protein CD59 have demonstrated improved survival in models of pig-to-primate xenotransplantation. Objective: The purpose of this study was to evaluate transgenic swine lungs that express the human complement regulatory protein CD59 in a model of pig-to-human xenotransplantation. Methods: Transgenic swine lungs (n = 5, experimental group) and outbred swine lungs (n = 6, control group) were perfused with fresh, whole human blood through a centrifugal pump on an ex vivo circuit. Functional data were collected throughout perfusion. Immunoglobulin and complement studies were performed on perfusate samples, and both histologic and immunofluorescent analyses were performed on tissue sections. Results: Mean lung survival for the experimental group was increased when compared with controls, 240 ± 0 minutes versus 35.3 ± 14.5 minutes, respectively, with a P value of less than .01. A decreased rise in pulmonary vascular resistance at 15 minutes was observed in the experimental group (343 ± 87 mm Hg · L–1 · min–1, in contrast to the control group (1579 ± 722 mm Hg · L–1 · min–1; P < .01). Pulmonary compliance at 15 minutes was improved for the experimental group versus control group (9.31 ± 1.41 mL · cm–2 H2O and 4.11 ± 2.84 mL · cm–2 H2O, respectively; P < .01). SC5b-9 generation in the plasma perfusate was delayed for the experimental group versus the control group. Immunofluorescent examination of tissue sections demonstrated equivalent deposition of immunoglobulin G, immunoglobulin M, C1q, and C3 in both groups, with reduced deposition of C9 in the experimental group. Conclusions: Transgenic swine pulmonary xenografts that express the human complement regulatory protein CD59 demonstrated improved function and survival in an ex vivo model of pig-to-human xenotransplantation. (J Thorac Cardiovasc Surg 2000;119:690-9

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity

    Get PDF
    Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity

    Mapping and characterization of structural variation in 17,795 human genomes.

    Get PDF
    A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0-11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing

    GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI

    Get PDF
    Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies
    • …
    corecore