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Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental 
stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of 
longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, 
genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular 
pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap 
between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as 
early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during 
infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors 
control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing 
and targets of prevention strategies.

INTRODUCTION
Childhood obesity and its relation to later adult health, social inequality, 
and psychosocial well-being remain one of the most important 
unsolved health concerns of the 21st century (1). Epidemiological 
studies have revealed unambiguous associations between alterations 
of childhood body mass index (BMI) trajectory and risk of adult 
obesity and multimorbidities, including type 2 diabetes (2) and other 
cardiometabolic diseases (3). From a life-course perspective, genetic 
and environmental factors driving child growth may have a lasting 
influence on maintaining health (4). Within this framework, identi-
fication of the genetic determinants of the critical periods in child 
development is important for understanding the mechanisms un-
derpinning adult health and preventing disease development.

To date, we have gained considerable insights into the shared 
genetic makeup of childhood and adult BMI (5, 6). These previous 
studies were designed to identify genetic variants associated with 
BMI and obesity acting through the ages of 2 to 18 years. However, 

BMI does not remain constant, or follow a linear pattern throughout 
life, particularly not from birth until the age of adiposity rebound 
(AR) (7, 8). On the contrary, the BMI trajectory in healthy individuals 
(fig. S1) encompasses three periods characterized by (i) a rapid 
increase in BMI up to the age of 9 months [adiposity peak (AP)], (ii) 
a rapid decline in BMI up to the age of 5 to 6 years [adiposity rebound 
timepoint (AR)], followed by (iii) a steady increase until early adult-
hood, when BMI growth rate decelerates. We have yet to determine 
whether changes in timing, velocity, or amplitude of this trajectory, 
during infancy and childhood, are influenced by specific genetic 
factors, acting at different developmental stages. The identification 
of genetic determinants of early growth traits is a fundamental step 
toward understanding the etiology of obesity and could be im-
portant in informing future strategies to prevent and treat it.

The present study set out to model sex-specific individual postnatal 
growth velocity and BMI curves in children using high-density longi-
tudinal data collected from primary health care or clinical research 
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visits. We first conducted a genome-wide association study (GWAS) on 
six harmonized early growth traits: peak height velocity (PHV), peak 
weight velocity (PWV), age at AP (Age-AP), BMI at AP (BMI-AP), age at 
AR (Age-AR), and BMI at AR (BMI-AR). We then analyzed the GWAS 
summary statistics for these six early growth traits to gain insights 
into the genes and molecular pathways involved and to assess the overlap 
between the genetic etiology of early growth traits and adult pheno-
types. In particular, we tracked the changes in the genetic determinants of 
BMI occurring throughout infancy, later childhood, and adulthood.

RESULTS
We conducted two-stage meta-analyses of GWASs on six early growth 
traits: PHV (in centimeters per month), PWV (in kilograms per month), 
Age-AP (in years), BMI-AP (in kilograms per square meter), Age-AR 
(in years), and BMI-AR (in kilograms per square meter). Figure S2 
summarizes the study design, while participant characteristics, geno-
typing arrays, imputation and quality control for the discovery, and 
follow-up studies are presented in tables S1 and S2 and fig. S3. In 
the discovery stage (stage 1), we meta-analyzed GWAS from four 
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population-based studies comprising between 6051 and 7215 term-
born children of European ancestry that had both genetic and early 
growth trait data (stage 1; see Methods, table S1, and fig. S4). From 
the stage 1 inverse variance meta-analyses, we selected a total of eight 
loci with either P < 1 × 10−7 or P < 1 × 10−5 in/near genes known to 
be associated with obesity and metabolic traits in published GWAS 
or candidate gene studies. Table S3 shows selection criteria, false 
discovery rate (FDR), and bias-reduced effect size estimates for the 
selected single-nucleotide polymorphisms (SNPs). In stage 2 meta- 
analysis, we followed up these results in up to 16,550 term-born 
children from up to 11 additional studies (stage 2; see Methods and 
table S2). In the combined stage 1 + 2 meta-analysis of the discovery 
and follow-up studies (including up to 22,769 children), we identified 
a common variant in each of the four independent loci, associated 
at P < 5 × 10−8 with one or more of the early growth traits (Table 1, Fig. 1, 
and fig. S5).

AR SNPs associate with adult BMI
Three of the four SNPs were associated with Age-AR and BMI-AR. 
These three variants were previously associated (P < 5 × 10−8) with 
adult BMI and adult weight in the literature (table S4) and in the UK 
Biobank PheWAS (phenome-wide association study) (9) (table S5), 
as well as with several adiposity-related phenotypes in PhenoScanner 
(10) (see Methods). The lead SNPs at each of these three loci were 
the following: rs1421085 at the locus harboring FTO (encoding a 
2-oxoglutarate–dependent demethylase) and rs2817419 at the locus 

harboring TFAP2B (encoding transcription factor AP-2) associated 
with Age-AR, and rs10938397 near GNPDA2 (encoding adiposity 
regulating glucosamine-6-phosphate deaminase) locus associated 
with BMI-AR (Table 1 and fig. S5). Each lead SNP (rs1421085, 
rs2817419, and rs10938397) associated with Age-AR and BMI-AR 
explains approximately 0.2% of variance in the relevant early growth 
trait (see Methods).

A new variant in LEPR/LEPROT associated with BMI-AP
The BMI-AP–associated SNP rs9436303 (Fig. 1 and Table 1) at the 
locus harboring LEPR/LEPROT (encoding the leptin receptor and 
the leptin receptor overlapping transcript) is novel. This novel variant is 
robustly associated with BMI-AP after applying a conservative bias- 
reducing correction for winner’s curse and a multiple testing correction 
for six phenotypes (′ = 10−8; see Methods and table S3). The risk 
allele (G) of this variant increases both BMI-AP and adult plasma 
soluble leptin receptor levels (P = 1.19 × 10−9) (table S4) (11). The 
LEPR/LEPROT locus is in a chromosomal region, 1p31.3, that harbors 
another independent signal [ rs11208659: minor allele frequency 
(MAF) = 0.06; distance = 82.6 kilo–base pairs; R2 = 0.01] associated 
with early-onset obesity (12), but our SNP rs9436303 is associated 
with BMI-AP independently of this variant [linkage disequilibrium 
(LD) R2 = 0.01 and see conditional analysis in table S6]. There was 
some effect heterogeneity between studies for this variant (fig. S6, A 
and D), but excluding the two studies with inflated estimates elimi-
nated heterogeneity (I2 = 0) in the stage 1 + 2 meta-analysis (fig. S6, 

Table 1. Summary statistics of the eight independent SNPs associated with PWV in infancy, BMI-AP in infancy, Age-AR, and BMI-AR in discovery (stage 1) 
and follow-up (stage 2) and in combined meta-analyses.  

Stage 1 (n = 7,215) Stage 2 (n = 16,550) Combined (n = 22,769)

Index SNP Chromosome 
position*

In/near 
gene

Effect allele/
other allele

Effect allele 
frequency

Effect 
size (SE) P Effect size

(SE) P Effect 
size (SE) P

PWV (kg/month)†

rs2860323 chr2:614210 TMEM18 G/A 0.12 0.09 (0.02) 5.9 × 10−5 0.02 (0.02) 4.7 × 10−1 0.06 (0.02) 3.9 × 10−4

BMI-AP (kg/m2)†

rs9436303 chr1:65430991 LEPR/LEPROT G/A 0.22 0.13 (0.02) 4.7 × 10−8 0.05 (0.01) 6.7 × 10−4 0.07 (0.01) 8.3 × 10−9

rs10515235 chr5:96323352 PCSK1 A/G 0.21 0.09 (0.02) 9.7 × 10−7 0.03 (0.01) 1.5 × 10−2 0.05 (0.01) 2.4 × 10−6

Age-AR (years)†

rs1421085 chr16:53767042 FTO C/T 0.25 −0.10 (0.02) 6.1 × 10−8 −0.13 (0.01) 7.1 × 10−24 −0.12 (0.01) 3.1 × 10−30

rs2956578 chr5:36497552 Intergenic
region‡ G/A 0.31 0.11 (0.02) 6.7 × 10−8 0.00 (0.01) 8.3 × 10−1 0.04 (0.01) 1.1 × 10−3

rs2817419 chr6:50845193 TFAP2B A/G 0.76 −0.10 (0.02) 2.9 × 10−6 −0.07 (0.01) 1.8 × 10−6 −0.08 (0.01) 4.4 × 10−11

BMI-AR (kg/m2)†

rs10938397 chr4:45180510 GNPDA2 G/A 0.35 0.09 (0.02) 5.4 × 10−6 0.05 (0.01) 3.1 × 10−4 0.06 (0.01) 2.9 × 10−8

rs2055816 chr11:85406487 DLG2 C/T 0.25 −0.13 (0.02) 1.4 × 10−7 −0.03 (0.02) 1.8 × 10−1 −0.07 (0.02) 5.1 × 10−6

*SNP positions are according to dbSNP build 147.   †The effect size is the change in SDs per effect allele from linear regression, adjusted for child’s sex and 
principal components (PCs) assuming an additive genetic model. BMI-AP was additionally adjusted for gestational age (GA). PWV, BMI-AP, and BMI-AR were 
log-transformed because of skewness in their distribution. Original phenotype measurement units are denoted in parentheses. None of the loci for PHV passed 
the selection criteria for stage 2 follow-up. P values for discovery and combined analysis are shown in bold if genome-wide significant (P < 5 × 10−8). The 
maximum sample size used in meta-analyses of each stage is shown in parentheses. Results are from inverse-variance fixed-effects meta-analysis of European 
ancestry children. The effect allele for each SNP is labeled on the positive strand according to HapMap.   ‡Intergenic region between RANBP3L and SLC1A3.

D
ow

nloaded from
 https://w

w
w

.science.org on July 23, 2024



Couto Alves et al., Sci. Adv. 2019; 5 : eaaw3095     4 September 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 17

C and F) without a substantial impact on effect sizes or significance 
levels. This SNP explains 0.3% of variance in BMI-AP (see Methods).

The SNP rs9436303 overlaps a regulatory region in a LEPR 
intron and is downstream from a processed transcript of LEPROT gene 
(table S7). LEPROT and LEPR overlap and share the same promoter 
but encode distinct transcripts with specific biological functions 
(13). The known biological function and molecular mechanism of 
the proteins encoded by the nearest genes in the four loci discovered 
are given in table S8. However, as with most GWAS-identified loci, 
the expression of these genes may not necessarily be influenced by 
the underlying causal variant/s tagged by the GWAS SNP, so we sought 
further evidence that the BMI-AP–associated variants influence 
expression in the following section.

Cis colocalization of GWAS and expression quantitative  
trait locus signals
To identify GWAS and expression quantitative trait loci (eQTLs) 
signals that share the same causal variants, we performed Bayesian 
colocalization analyses (14) using our stage 1 GWAS meta-analysis 
summary statistics and eQTL data from 44 postmortem tissues gen-
erated by the Genotype-Tissue Expression (GTEx) consortium (see 
Methods) (15). The lead GWAS variants with high (>95%) posterior 
probability (PP) of colocalization were followed-up in five separate 
studies (see Methods) using cis-eQTL data from five ex vivo tissues 
and combined with genomic annotation data (tables S9 and S10). In 
these analyses, we found high PPs of colocalization with local causal 
variants (>95%) driving the expression of LEPR and LEPROT 
(Table 2 and fig. S7). The colocalization results for each gene are 
markedly tissue specific (Fig. 2 and fig. S8). In ex vivo samples, the 
LEPR/LEPROT variant was in high LD with the top eQTLs of LEPR 

and LEPROT genes in omental fat, subcutaneous fat, and whole 
blood (table S9). Direct lookup of LEPR/LEPROT variant in eQTL 
data indicated that the G allele of this variant that raised BMI-AP in 
our GWAS up-regulated the NM017526 transcript of LEPROT and 
down-regulated the AK023598 transcript from the same gene in 
adult tissues (table S10). This observation was consistent across two 
different eQTL studies and four tissues, suggesting the involvement 
of alternative splicing of a cassette exon. The LEPR/LEPROT variant 
overlapped DNA binding motifs of transcription factors and regu-
latory regions, as well as enhancer and promoter histone marks in 
multiple tissues (fig. S9). In Avon Longitudinal Study of Parents 
and Children (ALSPAC), the same LEPR/LEPROT variant was 
associated with higher DNA methylation levels of a LEPR intron 
measured in blood samples taken from mother and offspring. In 
particular, associations were found during mother’s pregnancy and 
in offspring’s adolescence, but not at offspring’s birth, at childhood, or 
in mother’s middle age (table S11) (16). This observation might be 
consistent with the regulation of a constitutively expressed transcript, 
which is also supported by evidence that lower LEPR intron DNA 
methylation levels were associated with higher serum leptin con-
centrations (17). Together, these results suggest that shared causal 
variants in these loci regulate BMI trajectory at AP, orchestrate 
changes in gene expression in different tissues, and modulate methyl-
ation of the nearest genes during mother’s pregnancy and at specific 
developmental stages of the offspring.

Genetic determinants of adult BMI overlap with those 
determining AR but not AP
In our study, Age-AR and BMI-AR have moderate to very strong 
genetic correlations with adult BMI and other adult adiposity-related 

Fig. 1. Regional association and forest plot of the novel genome-wide significant locus associated with BMI-AP. Purple diamond indicates the most significantly 
associated SNP in stage 1 meta-analysis, and circles represent the other SNPs in the region, with coloring from blue to red corresponding to r2 values from 0 to 1 with the 
index SNP. The SNP position refers to the National Center for Biotechnology Information (NCBI) build 36. Estimated recombination rates are from HapMap build 36. Forest 
plots from the meta-analysis for each of the identified loci are plotted abreast. Effect size [95% confidence interval (CI)] in each individual study, discovery, follow-up, and 
combined meta-analysis stages is presented from fixed-effects models (heterogeneity of the SNP rs9436303 in LEPR/LEPROT; see fig. S6). At this locus, there was hetero-
geneity between the studies in discovery (I2 = 72.1%, P = 0.01) and combined stage (I2 = 59.3%, P = 0.002) fixed-effects meta-analyses that was mainly due to LISA-D, EDEN, 
and the larger well-defined NFBC1966 study (fig. S6, A and D). Removing the studies that showed inflated results from meta-analyses did not change the point estimates 
(fig. S6, C, F, and G). Both fixed- and random-effects models gave very similar results (fig. S6, B and E).
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phenotypes, but BMI-AP does not (see Methods, Fig. 3, and table S12). 
Age-AR and BMI-AR had genetic correlations with multiple (more 
than four) adult complex phenotypes, including adult waist circum-
ference (Age-AR rg = −0.62; BMI-AR rg = 0.48) and adult body fat 
percentage (Age-AR rg = −0.49; BMI-AR rg = 0.44). Adult BMI and 
adult obesity had strong genetic correlations with BMI-AR (rg = 0.64 
and rg = 0.66) and Age-AR (rg = −0.72 and rg = −0.75) but weak 
correlation with BMI-AP (rg = 0.29 and rg = 0.33). The traits with 
genetic and phenotypic correlations that were directionally consistent 
(note S1) are reported in table S13. Genetic correlations of Age-AP 
with other traits could not be quantified because of low mean 2 of the 
GWAS summary statistics. In summary, genetic correlation analyses 
suggest that the genetic factors influencing adult BMI, body fat 
percentage, waist circumference, and obesity are also associated with 

BMI-AR and Age-AR, but their overlap with BMI-AP is either absent 
or weak.

Genetic risk score for adult BMI is associated with Age-AR 
and BMI-AR but not with Age-AP and BMI-AP
To gain further insight into the observed genetic correlations with 
adult BMI and to understand the developmental timing of the adult 
BMI-associated variants, we constructed an adult BMI genetic risk 
score (GRS) based on the 97 adult BMI SNPs identified by the 
Genetic Investigation of Anthropometric Traits (GIANT) consortium 
(18) (Fig. 4 and table S14) and applied it to the six early growth traits 
(see Methods). The adult BMI variants and the GRS were consistently 
and robustly associated with Age-AR (h2

grs = 0.035, P = 2.6 × 10−48) 
and BMI-AR (h2

grs = 0.030, P = 1.7 × 10−41) but not with other early 

Table 2. GWAS loci colocalized with eQTL in postmortem tissues from the GTEx data. Colocalization results refer to GWAS and eQTL SNP. PP, posterior probability 

Chr Nearest gene Trait GWAS SNP GWAS SNP 
P value Tissue eQTL SNP eQTL  

P value eQTL gene Top eQTL 
SNP*(R2)

Colocalization 
PP (%)**

1 LEPR/LEPROT BMI-AP rs9436303 8.3 × 10−9 Thyroid rs9436301 7.9 × 10−7 LEPROT rs9436745 (0.78) 99

Esophagus 
muscularis rs1887285 1.6 × 10−6 LEPROT rs9436745 (0.78) 98

Cell EBV-
transformed 
lymphocytes

rs1887285 1.2 × 10−7 LEPR rs77848204 (0.22) 96

6 TFAP2B Age-AR rs2817419 4.4 × 10−11 Testis rs2635727 2.9 × 10−7 TFAP2B rs2635727 (0.91) 99

Sun-exposed 
skin lower leg rs2635727 4.2 × 10−6 TFAP2B rs2635727 (0.91) 98

*R2 values between GWAS SNP and GTEx top eQTL SNP for each gene (eGene) are shown for reference. Only results with a ** posterior probability (PP) of a shared 
causal variant of >95% are reported.
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Fig. 2.  Tissue-specific posterior probabilities (PPs) of colocalization for LEPR and LEPROT. PP of eQTL and GWAS SNP sharing a causal variant regulating the gene 
expression levels of (A) LEPR and (B) LEPROT. Colocalization reported for GTEX eQTLs data in 34 tissues that express at least one of the genes. Bar plot color-coded according 
to the –log10 P value eQTL direct lookup in the corresponding GTEx tissue of the GWAS SNP. LEPR and LEPROT eQTLs colocalized with BMI-AP variant rs9436303.
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growth traits (Fig. 4 and table S15). In the remaining four early growth 
traits, the GRS explained a negligible proportion of variance (h2

grs < 0.001), 
and the adult BMI variants had inconsistent genetic effects (fig. S10 
and table S15). In particular, the adult BMI variant effects on BMI-AP 
and PWV were highly heterogeneous (Phet < 2 × 10−4), with evidence 
of horizontal pleiotropy (MR-PRESSO; P < 2 × 10−4). This suggests 
that, in contrast with their effects on Age-AR and BMI-AR, the top 
loci associated with adult BMI do not have robust associations with 
the remaining four early growth traits. Thus, the underlying genetic 
determinants of adult BMI might differ from those influencing 
BMI-AP. Together, these data indicate that many GWAS variants 
associated with adult BMI have effects that begin in later childhood 
(4 to 6 years), as early as the Age-AR but not as early as AP (around 
9 months).

Gene set analyses suggest little overlap between pathways 
and networks controlling AP and AR
To combine information on the effects of common variants in bio-
logical pathways and networks underlying early growth, we applied a 
gene set enrichment analysis [Meta-Analysis Gene-set Enrichment 
of variaNT Associations (MAGENTA)] (19) to the discovery stage 
GWAS results (see Methods). We identified enrichment of gene 

sets (tables S16 and S17) but did not find evidence for overlap of 
enriched pathways and networks among early growth traits. Age-AR–
associated regions are involved in the insulin-like growth factor 1 
(IGF-1) signaling pathway (FDR < 0.05). The IGF-1 signaling path-
way has a well-established role both in growth and in the regulation 
of energy metabolism through the activation of phosphatidylinositol 
3-kinase (PI3K)/AKT pathway via either the insulin or the IGF-1 
receptors (20).

SNP heritability of Age-AR and BMI-AR is larger than BMI-AP
We estimated the chip SNP heritability (the proportion of variance 
explained by common SNPs) for the six early growth traits using 
LD score regression (LDSC) (see Methods). The heritability estimates 
for BMI-AR (h2

snp = 0.38), Age-AR (h2
snp = 0.36), PWV (h2

snp = 0.32), 
and BMI-AP (h2

snp = 0.29) were statistically significant (P < 0.05; 
Table 3). LDSC and SumHer (21) SNP heritability estimates (table 
S18) ranked these phenotypic heritabilities in a similar manner. The 
BMI-AP and BMI-AR estimates compared well with LDSC esti-
mates for adult BMI (h2

snp = 0.27) in a much larger sample of the 
UK Biobank (N = 152,736). Twin and family study heritability esti-
mates for BMI-AP (h2 = 0.75 to 0.78) (22, 23) and BMI-AR (h2 = 0.4 
to 0.6) (24, 25) were higher than the SNP heritability estimated here. 

Fig. 3. Genetic correlations between five early growth traits and a subset of 37 phenotypes. Only a selected list of 37 phenotypes is represented on the correlation 
matrix. Genetic correlation results for all 72 phenotypes are given in table S16. Blue, positive genetic correlation; red, negative genetic correlation. The correlation matrix 
underneath represents the genetic correlation among the five early growth traits themselves. The size of the colored squares is proportional to the P value, where larger 
squares represent a smaller P value. Genetic correlations that are different from 0 at P < 0.05 are marked with an asterisk. The genetic correlations that are different from 
0 at an FDR of 1% are marked with a circle. Genetic correlations estimated with stage 1 meta-analysis GWAS summary statistics from the current and literature studies 
using LD score regression.
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However, the ratio of the SNP heritability obtained from LDSC and 
the total heritability obtained from family and twin studies suggests 
that a considerable (39 to 95%; see Methods) proportion of BMI 
heritability can be attributed to common variants. As the LDSC 
heritability estimates of BMI-AP, BMI-AR, and adult BMI are com-
parable, the differences in the genetic etiology observed in our study 
cannot be trivially attributed to large disparities in the variance ex-
plained by genetic factors. Hence, together, these data suggest that 
distinct, heritable developmental processes control the BMI trajectory 
at AP and AR.

DISCUSSION
There are few reports of studies investigating the genetic bases of 
these well-established growth and BMI trajectories (26, 27), and to 
our knowledge, our study is the largest genome-wide meta-analyses 
of early growth traits so far. In the present study, we identified four 
variants at four independent loci associated with three early growth 
traits, determined by modeling growth trajectories using high-density 
longitudinal data for height and weight. Our study provides insights 
into the developmental timings at which the genetic makeup of early 
and later measures of BMI overlaps or differs, and contributes to 

understanding the mechanisms and molecular pathways of early 
growth patterns.

The three common variants at FTO, TFAP2B, and GNPDA2, 
associated with timing of adiposity rebound and/or BMI-AR, are 
robustly associated with adult BMI and other adiposity traits. In 
contrast, the newly discovered variant at the LEPR/LEPROT locus 
associated with BMI-AP did not associate with other growth traits 
reported here, or in previous studies on childhood/adult BMI and 
obesity. This may indicate that genetic variants involved in adult 
BMI only start influencing BMI after AP and are robustly associated 
with child BMI by the time of AR. This is further corroborated by 
two additional lines of evidence provided by our study: (i) We ob-
served strong genetic correlations of adult BMI, body fat percentage, 
and waist circumference with Age-AR and BMI-AR but not with 
Age-AP and BMI-AP, and (ii) the GRS constructed using adult BMI 
variants was robustly associated with Age-AR and BMI-AR but not 
with Age-AP and BMI-AP.

The difference in the genetic determinants of BMI-AP and BMI-AR 
and onward may be attributed to three factors: (i) BMI explains a 
relatively small proportion of body fat percentage (R2 < 0.3) in infancy 
(0 months < age ≤ 7 months) (28) but increasingly larger proportions 
(0.36 < R2 ≤ 0.8) in childhood (2 years ≤ age < 18 years) (29, 30) and 
adulthood (R2 ≈ 0.8; age, >18 years) (31); (ii) the genes involved in 
the regulation of BMI during infancy seem to differ from those acting 
in later childhood onward, which suggests distinct biological processes 
acting throughout these developmental stages; and (iii) sustained 
changes in the infant environment after weaning and onward may 
progressively unmask the effects of adult BMI variants. Consistent 
with this view, there is some evidence that infants’ and children’s 
environment modifies the effect of genetic factors. In particular, 
having been breastfed modifies the strength of association of the 
FTO variant with BMI (32) and with BMI growth trajectories (27). 
On the other hand, the adult risk alleles of the FTO and MC4R variants 
are not associated with increased infant BMI (26), but FTO’s strength 
of association with BMI progressively increases in later childhood 
(4 to 11 years) (24). Likewise, BMI heritability increases throughout 
childhood up to young adulthood (4 to 19 years) (22, 24, 25), as 
offspring BMI starts resembling adult BMI as an anthropometric 
marker of adiposity, and as the shared environment between adults 
and offspring progressively increases. Consistently, BMI heritability 
increased between AP and AR, and a considerable proportion of 
heritability was explained by common variants in our study. The in-
crease in BMI heritability with age might be explained by correlations 
between genotype and environment. Small genetic differences are 
magnified as children progressively select, modify, and create environ-
ments correlated with their genetic propensities, which, in turn, unmask 
the effects of other genetic variants in a feedforward loop. These pro-
cesses gradually may increase the phenotype variance explained by 
genetic factors and thereby increase BMI heritability. All in all, our 
study supports the accrual of shared genetic determinants between 
later childhood and adult BMI (5, 6), but not with infant BMI.

In our study, the IGF-1 pathway that links diet with growth was 
enriched for variants associated with Age-AR, but not Age-AP, in 
the MAGENTA analysis. Higher IGF-1 levels, via genetic and/or 
nutritional factors, can reduce growth hormone (GH) levels via a 
negative feedback (33). Subsequent lower circulating levels of GH 
can suppress lipolysis and contribute to fat accumulation (34), 
changing BMI trajectories and Age-AR, and, thereby, increasing risk 
of obesity and metabolic disorders. The regulation of the GH/IGF-1 

A

B

Fig. 4. Adult BMI GRS analysis of early growth traits. Scatter plots show the 
effect size estimates (SD units) of the 97 adult BMI-associated SNP in GIANT consortium 
in the x axis and the corresponding effect size estimates (SD units) of the looked-up 
SNP of stage 1 meta-analysis GWAS on (A) BMI-AR and (B) Age-AR in the y axis. The 
effect size of the adult BMI increasing allele is plotted. The solid red line is the esti-
mated effect of the GRS on the early growth phenotype, taking into account the 
uncertainty of the point estimates. The dashed line is the 95% CI of the predicted 
effect. Stage 1 meta-analysis GWAS SNPs with P < 0.05 are plotted with a solid circle 
and labeled with the nearest gene name. The scatter plots of the other early growth 
phenotypes are given in fig. S10.
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axis is modulated by leptin and adiponectin levels, two hormones 
regulated by LEPR/LEPROT and TFAP2B genes, respectively (35).

The variant at LEPR/LEPROT colocalized with causal variants 
regulating the expression of LEPR and LEPROT in different tissues. 
LEPROT and the LEPR genes share the same promoter but encode 
distinct transcripts (13). LEPROT is cotranscribed with the LEPR, and 
both are expressed in multiple tissues with different functionalities. 
LEPR is widely distributed in peripheral tissues, shows signaling 
capability, and is thought to transport leptin across the blood-brain 
barrier (25). Some LEPR isoforms may function in leptin clearance 
or buffering (soluble LEPR). In our eQTL data, the G allele that raises 
BMI-AP up-regulates the NM017526 transcript of LEPROT but 
down-regulates AK023598 transcript from the same gene in adult 
tissues. This observation was consistent across the different eQTL 
studies and tissues, suggesting that this variant may regulate the 
alternative splicing of a cassette exon in adult blood and subcutaneous 
and omental adipose tissue. In addition, the LEPR/LEPROT variant 
was associated with methylation levels in the LEPR intron during 
mother’s pregnancy and at specific developmental stages of the 
offspring. Together, this functional analysis suggests that distinct 
molecular mechanisms in different tissues are involved in the expres-
sion regulation of these genes at different developmental stages.

LEPROT and the LEPR downstream mechanisms involved on 
the regulation of BMI are likely to be developmental stage dependent. 
In humans, loss-of-function mutations in the LEPR markedly increase 
weight of infants after birth that persists through adulthood (36). 
However, the regulatory elements of LEPROT and LEPR tagged by 
our GWAS SNP are not associated with BMI or any measure of 
adiposity in adults or in later childhood, despite being associated with 
BMI in infancy and involved in the control of the circulating levels 
of the soluble LEPR in adults. Hence, the regulatory variant identified 
is involved in the regulation of adult LEPR through a mechanism 
that does not alter BMI after later childhood (age, >4 years). More 
work is necessary to identify the impact of LEPROT mutations in 
weight gain and growth, as well as in the identification of the tissues 
and regulatory elements of the different LEPR isoforms.

Our study has limitations that should be taken into consideration 
when interpreting the data. First, dense longitudinal growth and 
GWAS data are only available in a few population studies worldwide, 
so we had limited power to detect genetic variants with smaller 
effects and/or low allele frequencies. Nevertheless, a post hoc power 
analysis showed that we are well powered to detect the reported effect 
sizes in the discovery sample ( = 0.065 SD units; power, 80%; signifi-
cance level P < 5 × 10−8; see Methods). As a sex-stratified analysis 

would have halved the sample size, the analysis of sex-specific 
effects was left outside the scope of the paper. As in every joint 
meta-analysis GWAS, the final estimates may have suffered from 
winner’s curse (37). In our study, the follow-up sample is twice the 
size of the discovery sample. Consequently, the final joint analysis 
estimates are very close to the follow-up estimates and are thus 
potentially less biased. Second, it is noteworthy that these derived 
growth traits are likely to be influenced by a degree of measurement 
error and some heterogeneity, as some studies have fewer repeated 
measures around the time points being estimated. Ideally, regression 
would be weighted by the inverse variance of the phenotypes 
derived from the growth models. However, the variances for the 
derived outcomes could not be directly estimated because we used a 
model with random effects. The fact that we did not use inverse- 
weighted regression will increase SEs and decrease the power to 
detect associations. Despite this, we were still able to find genetic 
variants showing robust associations with these derived growth traits. 
Third, as the current approach implemented in MAGENTA focus 
on a fixed cutoff (the 95% percentile of the P value), our analysis has 
possibly missed enriched gene sets. Nevertheless, the top 10 gene 
sets that did not reach significance (FDR, >0.05) were reported. 
Last, we did not identify any variants associated with PHV, PWV, and 
Age-AP at genome-wide levels of significance, and this may be due 
to a combination of smaller genetic effects on growth at this stage 
of development, due to reduced statistical power because of smaller 
sample size, or because environmental factors masked the genetic influ-
ences at this age. The interplay between genetic variants, infant feeding, 
and other environmental factors also warrants additional research (27).

In conclusion, this longitudinal GWAS study, based on derived 
traits from growth modeling, has uncovered a completely new variant 
in LEPR/LEPROT locus that specifically associates with BMI at the 
peak of adiposity in infancy. The present study identified two BMI 
developmental stages in infancy and later childhood with distinct 
genetic makeup. Our results support the notion that genetic determinants 
of adult BMI progressively start acting in later childhood but not neces-
sarily before the AP in infancy (5, 6). This finding may corroborate 
a model of BMI development consisting of the superimposition of 
two biological processes with distinct genetic drivers (Fig. 5), which, 
in turn, suggests that interventions in childhood aiming to modify 
BMI and achieve long-lasting reductions in the risk of adult obesity 
need to take into account the developmental stage. We believe that 
the identification of genetic factors underpinning the BMI trajectory is 
a fundamental step toward understanding the etiology of obesity 
and may inform strategies to prevent and treat it.

Table 3. SNP heritability of the early growth traits. SNP heritability estimated with LD score using all common SNPs (MAF > 0.01) in stage 1 GWAS  
meta-analysis. 

Trait Estimated 
heritability SE 95% CI Mean 2 P

BMI-AP 0.29 0.08 0.13 0.46 1.03 4.7 × 10−4

BMI-AR 0.38 0.08 0.22 0.53 1.013 2.7 × 10−6

Age-AP −0.03 0.08 −0.18 0.13 1.001 7.4 × 10−1

Age-AR 0.36 0.08 0.20 0.52 1.007 1.1 × 10−5

PHV 0.11 0.07 −0.03 0.25 1.006 1.3 × 10−1

PWV 0.32 0.07 0.18 0.45 1.011 2.5 × 10−6
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METHODS
Longitudinal growth modeling and derivation of early 
growth traits
Early growth traits were derived from sex-specific individual growth 
curves using mixed-effects models of height, weight, and BMI mea-
surements from birth to 13 years (fig. S1). All height and weight data 
were collected prospectively via either self-reported data or clinical 
measurements (tables S1 and S2). These traits were derived sepa-
rately in each cohort (note S2).
Derivation of PHV and PWV
The methods for growth modeling and derivation of growth pa-
rameters from the fitted curves are described in detail in a previous 
publication (38). Parametric Reed1 growth model was fitted in 
sex-stratified nonlinear random-effect model as described previously 
(39). Term-born singletons (defined as ≥37 completed weeks of 
gestation) with at least three height or weight measurements from 
birth to 24 months of age were included in the Reed1 model fitting. 
Maximum-likelihood method for best fitting curves for each indi-
vidual was used to estimate the growth parameter, PHV (in centimeters 
per month), and PWV (in kilograms per month).
Derivation of Age-AP, Age-AR, BMI-AP, and BMI-AR
The methods used for growth modeling of age and BMI have been 
previously described in detail by Sovio et al. (26). Because of the 
specificity of longitudinal changes in BMI, i.e., succession of peak 
and nadir as described in fig. S1, the data were divided into two age 
windows for modeling: (i) growth in infancy using height and weight 
data from 2 weeks to 18 months of age and (ii) growth in childhood 
using growth and weight data from 18 months to 13 years of age. 
Each cohort contributed most data available within any of these two 
age windows. In studies where the data available consisted of both 
height and weight data within a given window, the data point nearest 
to the mid time points of that window was used as a proxy for the 
BMI measurement. Before model fitting, age was centered using the 
median age of the relevant age window. For example, in the infant 
growth model at 0 to 1.5 years, the median age was 0.75 years (which 
was close to the average Age-AP), and in the childhood growth 
model at >1.5 to 13 years, the median age was 7.25 years (on average 

shortly after AR). Linear mixed-effects models were then fitted for 
log-transformed BMI. We used sex and its interaction with age as 
covariates, with random effects for intercepts (i.e., baseline BMI) 
and linear slope (i.e., linear change in BMI) over time. In addition 
to linear age effect, quadratic and cubic terms for age were included in 
the fixed effects to account for nonlinearity of BMI change over time.
Growth in infancy
The following model was used to calculate the Age-AP and BMI-AP, 
and the analysis was restricted to singletons with BMI measures 
from 2 weeks to 18 months of age. The model is as follows

log(BMI) = 0 + 1 Age + 2 Age2 + 3 Age3 + 4 Sex + u0 + 
u1 (Age) + 
where BMI is expressed in kilograms per square meter and age in 
years. 0, 1, 2, 3, and 4 are the fixed-effects terms, u0 and u1 are 
the individual-level random effects, and  is the residual error. The 
Age-AP was calculated from the model as the age at maximum BMI 
between 0.25 and 1.25 years according to preliminary research (38).
Growth in childhood
The model used to measure the age and BMI-AR in childhood is as 
follows

log(BMI) = 0 + 1 Age + 2 Age2 + 3 Age3 + 4 Sex +5 Age × 
Sex + 6 Age2 × Sex + u0 + u1 (Age) + 
where BMI is expressed in kilograms per square meter and age in 
years. 0, 1, 2, 3, 4, 5, and 6 are the fixed-effects terms, u0 and 
u1 are the individual-level random effects, and  is the residual 
error. Age-AR was calculated as the age at minimum BMI between 
2.5 and 8.5 years according to preliminary research (38).

Stage 1 GWASs, genotyping, and imputation
Stage 1 genome-wide association analyses included up to 7215 children 
of European descent from five studies (four studies for each early 
growth trait) that had growth data and genome-wide data. These in-
cluded the Helsinki Birth Cohort Study (Finland), Northern Finland 
Birth Cohort 1966 (NFBC1966; Finland), Lifestyle- Immune System– 
Allergy Study (LISA; Germany), The Western Australian Pregnancy 
Cohort Study (Raine, Australia), and Generation R (The Netherlands) 
(figs. S2 and S3). Informed consent was obtained from all study 

Fig. 5. Proposed model of child BMI suggesting the superimposition of two biological phenomena under the genetic control of different loci. The schematic 
diagram shows the four genome-wide significant loci associated with early childhood growth traits and highlights the fact that only SNPs associated with phenotypes 
ascertained at AR are associated with adult BMI. The red curve represents the mean BMI trajectory from birth to puberty in the NFBC1966 cohort. D
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participants (or parental consent, as appropriate), and the local ethics 
committees as appropriate approved all study protocols. Study charac-
teristics, genotyping platform, imputation and association test 
software used, as well as sample and genotyping and imputa-
tion quality control steps in each stage 1 study are given in table S1. 
Stage 1 consisted of a GWAS based on ~2.5 million directly geno-
typed or imputed SNPs. Imputation of nongenotyped SNPs was 
undertaken either with MACH or with IMPUTE and were im-
puted to HapMap phase 2 CEU reference panel after excluding 
genotyped SNPs with a MAF of <1%, call rate of at least ≥95%, and 
a Hardy- Weinberg equilibrium (HWE) P value cutoff as given in 
table S1.

Stage 1 genome-wide association analyses  
and meta-analyses
According to the availability of dense enough data for growth 
modeling, a total of up to 7215, 6222, 6219, and 6051 children were 
used to analyze PHV/PWV, Age-AP, BMI-AP, and Age-AR/BMI-AR, 
respectively (fig. S2). We only included children who were born 
between 37 and 41 completed weeks of gestation (i.e., term born) 
from singleton pregnancies and children who had more than three 
growth measurements available within the age range in question. 
Gestational age (GA) was either defined from the date of the last 
menstrual period or ultrasound scans depending on the study. All six 
early growth traits except for Age-AP and Age-AR were naturally 
log-transformed to reduce skewness, and all traits were converted 
to z-scores before association testing to facilitate the comparison of 
results across the studies. We tested the directly genotyped and 
imputed variants for association with each of the six early growth 
traits in a linear regression model, assuming an additive genetic 
effect. The regression models were adjusted for sex and principal 
components (PCs) derived from the genome-wide data to adjust for 
potential population substructure (the necessary number of PCs 
included varied by study). GA is a marker of multiple factors influ-
encing pregnancy that may influence the child growth trajectory. 
Regression of all phenotypes on GA adjusting for sex produced 
significant associations, apart from BMI-AR and Age-AR, which 
showed significant associations with sex only. On the basis of this 
observation, we adjusted all GWAS analyses for GA and sex apart 
from BMI-AR and Age-AR, which were adjusted for sex only. The 
risk of introducing collider bias was dismissed because gestational 
effects occur before birth, and the loci found did not overlap with 
GA signals in the GWAS catalog or PhenoScanner. The genome-wide 
association analyses (i.e., stage 1) were performed using either 
SNPTEST or MACH2QTL in each cohort, and data exchange 
facilities were provided by the AIMS server (40). All stage 1 study 
beta estimates and their SEs were meta-analyzed using the 
inverse-variance fixed-effects method in the METAL software (41). 
SNPs with poor imputation quality (e.g., r2 < 0.3 for MACH and 
“proper_info” score < 0.4 for IMPUTE) and/or an HWE P < 1 × 10−4 
were excluded before the meta-analyses. Double genomic control 
(42) was applied: first, to adjust the statistics generated within each 
cohort and, second, to adjust the overall meta-analysis statistics. 
Results are reported as a change in SD units per risk allele as reported 
in Table 1.

Selection of SNPs for stage 2 follow-up
All loci reaching P < 1 × 10−7 from stage 1 GWAS of each early 
growth trait were selected for follow-up in stage 2. These included 

the two SNPs associated with Age-AR in the FTO locus (rs1421085) 
and in the intergenic region between RANBP3L and SLC1A3 
(rs2956578), and the SNP associated with BMI-AP in LEPR/LEPROT 
(rs9436303). Four further SNPs [one SNP associated with BMI-AP 
near PCSK1 (rs10515235), one SNP associated with Age-AR in 
TFAP2B (rs2817419), and two SNPs associated with BMI-AR near 
GNPDA2 (rs10938397) and in DLG2 (rs2055816)] were selected for 
follow-up on the basis of showing an association with an early 
growth trait at P < 1 × 10−5 and being in/near genes with established 
links to adiposity and metabolic phenotypes except for DLG2, a 
possible candidate gene involved in glucose metabolism (43). In 
addition, one locus with a plausible association (P = 5.91 × 10−5) 
with PWV, near TMEM18 (rs2860323), was also selected for follow-up 
based on previous reports showing an association with severe 
early-onset obesity (12) and its association with BMI in adulthood (44) 
and childhood (6) (table S3). No loci for PHV or Age-AP passed the 
P value threshold or other selection criteria used for follow-up. 
Table S3 shows the SNP selection criteria and proxies used in 
more detail.

Stage 2 follow-up of lead SNPs
For follow-up of lead signals selected from stage 1, we used data 
from up to 16,550 children of European descent from 12 additional 
population-based studies (up to 11 studies for each early growth 
trait), namely, the ALSPAC (United Kingdom), Cambridge Baby 
Growth Study (United Kingdom), Children’s Hospital of Philadelphia 
(United States), Copenhagen Prospective Study on Children 
(Denmark), Danish National Birth Cohort (Denmark), Étude des 
Déterminants pré- et postnatals du développement et de la santé de 
l’ENfant (EDEN; France), The Exeter Family Study of Childhood 
Health (United Kingdom), INfancia y Medio Ambiente Project 
(Spain), Lifestyle-Immune System–Allergy Study [LISA (R), Germany], 
Northern Finland Birth Cohort Study 1986 (Finland), The Physical 
Activity and Nutrition in Children (Finland), and Southampton 
Women’s Survey (United Kingdom). We used de novo SNP geno-
typed or imputed data for the eight SNPs (or proxies of r2 > 0.8) 
selected from stage 1 and tested their association in a total of 5367, 
16,550, 12,256, and 12,192 children of European ancestry with 
PWV, BMI-AP, Age-AR, and BMI-AR, respectively (Fig. 2). Direct 
genotyping was performed in some follow-up studies by 
KBiosciences Ltd. (Hoddesdon, United Kingdom) using their own 
novel system of fluorescence-based competitive allele-specific poly-
merase chain reaction (KASPar). The call rates for all genotyped 
SNPs were >95%. Study characteristics, genotyping platform, impu-
tation and association test software used, as well as sample and 
genotyping and imputation quality control steps in each stage 1 
study are given in table S2. We used the same methods as in stage 1 
for sample selection, genotyping quality control, association testing, 
and meta-analysis.

Combined analysis of stage 1 and stage 2 samples
All stage 1 and 2 results were meta-analyzed using the inverse- 
variance fixed-effects method in either METAL (41) or R (version 
3.2.0; www.r-project.org/). In these combined analyses, loci reaching 
P < 5 × 10−8 were considered as genome-wide significant, and loci 
reaching P < 5 × 10−6 were considered as a suggestive association. 
Heterogeneity between studies was tested by Cochran’s Q tests, and 
the proportion of variance due to heterogeneity was assessed using 
I2 index for each individual SNP at each stage.
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Estimation of genetic variance explained
The variance explained (h2) by each SNP was calculated using the 
risk allele frequency (f )  and beta () from the meta-analyses using 
the formula h2 = 2 (1 − f ) 2f.

Stage 1 (discovery stage) GWAS FDR
We applied Efron’s method (45) to the P values of all common SNPs 
(MAF > 1%) in stage 1 GWAS to estimate the FDR of the prioritized SNPs.

Bias-reducing correction for winner’s curse
We applied the method of Zhong and Prentice (46) to the eight signals 
prioritized in our discovery GWAS and reported bias-reduced 
estimates for the following discovery cutoffs P < 10−5, P < 10−6, 
and P < 10−7.

GWAS multiple testing correction for six phenotypes
The standard joint meta-analysis genome-wide significance cutoff 
( = 5 × 10−8) was corrected using Bonferroni method for the num-
ber of independent tests. First, we applied the method of Li and Ji 
(47) to the phenotypic correlation matrix of the NFBC1966 (N > 
2500) to estimate the number of “independent” phenotypes (m = 5). 
The corrected cutoff was estimated with Bonferroni method 
applied to five independent tests (’ =  /5 = 10−8).

Analysis of the phenotypic effects of the lead GWAS SNPs 
in published genetic studies
The phenotypic implication of the lead GWAS SNP on 778 pheno-
types was obtained from the Gene ATLAS (9) PheWAS conducted 
on 452,264 white British individuals from UK Biobank available at 
http://geneatlas.roslin.ed.ac.uk. In addition, we looked up the lead 
GWAS SNP or a proxy on published large-scale GWAS datasets 
using PhenoScanner (10) available at www.phenoscanner.medschl.
cam.ac.uk/phenoscanner. Only proxy SNPs from the 1000 genomes 
panel in high LD (R2 > 0.8) with the lead GWAS SNP were consid-
ered. We then searched for all SNPs with phenotypic associations in 
the same chromosomal region of our lead GWAS signals using the 
GWAS catalog (48) available at www.ebi.ac.uk/gwas/. We reported 
associations obtained from these analyses with significance cutoff 
P < 5 × 10−8. Last, we searched for non-GWAS genetic studies, i.e., 
family, pedigree, and clinical studies with PubMed queries available 
at www.ncbi.nlm.nih.gov/pubmed/.

Conditional analyses
We conducted conditional analysis of the lead and proxy SNP ex-
pected dosages using a linear regression model adjusted for sex and 
GA in 3459 children from the NFBC1966 study. We considered two 
models to assess the effect of both SNPs. First, the early growth trait 
is regressed on the lead SNP adjusting for the study covariates sex 
and GA. Second, the proxy SNP is added to the previous model. 
The lead and proxy SNP effects are considered independent if the 
effect size estimate of the lead SNP in model 2 did not vary more 
than 20% of the effect estimate of model 1, and the corresponding 
P value reached a nominal significance ( = 0.05).

Variance effect prediction analysis
We obtained information about the putative effect of the lead GWAS 
SNPs using VEP tool (49) available at www.ensembl.org/Homo_sapiens/
Tools/VEP. The analysis included pathogenicity, splicing, and con-
servation predictions as well as regulatory annotations.

Overlap of the genetic makeup of early growth traits 
with adult and childhood phenotypes
To gain insights into the potential overlap in the genetic makeup 
of early growth traits with adult and childhood phenotypes, we 
searched databases and the literature for the phenotypic implica-
tions of our four GWAS SNPs. First, we retrieved from the Gene 
Atlas (9) PheWAS in the UK Biobank data all phenotypic associations 
(P < 5 × 10−8) with our four GWAS SNPs (table S4). Second, we 
retrieved from the PhenoScanner (10) database all SNPs in the litera-
ture with phenotypic associations (P < 5 × 10−8) and in high LD 
(R2 > 0.8) with our four GWAS lead variants (table S5). Third, we 
systematically searched in the GWAS catalog (48) database all SNPs 
with phenotypic associations (P < 5 × 10−8) in the chromosomal 
regions of our four GWAS lead variants.

Bayesian colocalization
Colocalization analyses were performed using our stage 1 GWAS 
results with multitissue eQTL results from GTEx data (www.gtexportal.
org/home/datasets) (15). For each GTEx tissue (n = 48 tissues), we 
first identified all genes with significant cis-eQTLs at <5% of FDR. For 
each such gene, we retrieved the GWAS summary statistics for each 
of the three traits (BMI-AP, BMI-AR, and Age-AR), for all SNPs in 
common between the GWAS and the eQTL data [typically every-
thing within 1 megabase (Mb) of the gene transcription start site]. If 
the GWAS locus contained one or more eQTL variant at P < 5 × 10−6, 
then we implemented the computational procedure outlined in the 
coloc package in R (https://github.com/chr1swallace/coloc/blob/
master/R/coloc-package.R) (50) with default parameters and using 
the MAFs of European ancestry individuals from 1000 Genomes study.

Expression quantitative trait locus
We searched for cis-eQTLs in liver, skin, whole blood, subcuta-
neous fat, and omental fat ex vivo tissues made available by the 
MuTHER (51), KORA (52), DeCode (53), Lee Kaplan (54), and BIOS 
(55) studies. The association analyses were performed with the 
GWAS lead SNP following the procedure described previously (56). 
The analysis of eQTLs was limited to genes in cis within a ±1-Mb 
window of the lead SNP. For each GWAS lead SNP, we separately 
reported the top eQTL in the locus and the coincident cis-eQTLs 
with significance cutoffs of P < 1 × 10−3 and an FDR of <5%, respec-
tively. For studies where gene expression was measured using a 
microarray technology, the microarray probes were annotated with 
information accessed on ProbeDB (available at www.ncbi.nlm.nih.gov/
probe/). If the probe IDs were not available in the ProbeDB, then 
we aligned the probe sequence to HG38 with blast algorithm available 
at https://blast.ncbi.nlm.nih.gov/Blast.cgi and then annotated the 
transcripts overlapping the genomic coordinates using consensual 
information in GenBank, RefSeq, ENCODE (Encyclopedia of DNA 
Elements), and UCSC (University of California, Santa Cruz) databases.

Methylation quantitative trait locus
We searched for cis-methylation QTL in blood at five different life 
stages using mQTLdb (www.mqtldb.org/). Methylation QTL data 
were generated as previously described (16) using ALSPAC study data. 
Only GWAS SNPs that colocalized with eQTL data were looked up.

Genetic correlations using LD score regression analyses
We used the LD hub (57) available at http://ldsc.broadinstitute.org 
to quantify the genetic correlation between each of the six early 
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growth traits and a selection of 49 disease/traits of interest from 33 
GWAS studies in the following precompiled categories: education, 
anthropometric traits, lipids, glycemic traits, bone mineral density, 
neurological/psychiatric diseases, and other traits (including 
adiponectin, coronary artery disease, type 2 diabetes, and menarche). 
We carried out the LD score regression analyses for blood pressure 
traits using the Python scripts provided on the developer’s website at 
https://github.com/bulik/ldsc. Before running the LD score regression 
analyses, each summary statistics file was reformatted using the 
munge_sumstats.py Python script, which filtered the SNPs to HapMap 3 
SNPs as recommended on the developer’s website to minimize any bias 
from poor imputation quality. SNPs were also excluded if an MAF of 
<0.01, ambiguous strand, duplicate rsID, and reported sample size are 
less than 60% of the total available. If the sample size for each SNP was 
available, then we used the –N-col to specify the relevant sample size 
column in the GWAS summary statistics file, and when no sample size 
column was available, we used the maximum sample size reported in the 
GWAS meta-analysis. After the GWAS summary statistics files were 
reformatted, we then used the ldsc.py Python script to run the LD 
score regression analyses between each of the six early growth traits 
and systolic blood pressure and diastolic blood pressure. The pre-
complied European LD scores calculated from 1000 Genomes data 
available on the developer’s website were used for LD score regression.

Adult BMI GRS
We calculated a weighted GRSs of adult BMI with the 97 SNPs 
associated with BMI at genome-wide levels of significance in 
the GIANT consortium (18) using the R package gtx and following 
the procedure described in (58). Briefly, a risk score estimating the 
pleiotropic effect of adult BMI variants on each early growth trait 
was inferred from summary statistics obtained from the stage 1 
GWAS meta-analyses. Risk score models with evidence of hetero-
geneity (Phet < 0.05, only BMI-AP) were refitted using a downwards 
elimination of SNPs with largest effect size until the model is not 
heterogeneous (Phet > 0.05). In addition, we estimated evidence of 
horizontal pleiotropy between adult BMI and each early growth 
trait with the package MR-PRESSO (59).

Pathway enrichment analysis
To explore the pathways associated with early growth traits, we 
applied MAGENTA (version 2) (19) to the stage 1 GWAS results. 
Briefly, each gene in the genome was mapped to a single SNP with 
the lowest P value within a 110-kb upstream or 40-kb downstream 
window of the gene. The corresponding P value, representing each 
gene, was corrected for confounding factors such as gene size, LD 
patterns, SNP density, and other genetic factors. The adjusted P values 
were ranked, and the observed number of genes in a given pathway 
above a specified P value threshold (75th and 95th percentiles used) 
was calculated. This number was compared with that from repeat-
ing the process based on 10,000 randomly permuted pathways of 
identical size. In doing so, an empirical gene set enrichment associ-
ation (GSEA) P value for each pathway was computed. In our study, 
individual pathways with an FDR of <0.05 and nominal GSEA 
P < 0.05 were deemed significant, and, unless otherwise stated, 
results for the 95th percentile cutoff analysis were reported.

SNP heritability
We estimated the SNP heritability, the proportion of variance ex-
plained by common SNPs (MAF > 1%), with LD score as implemented 

in LD hub and using our six stage 1 GWAS meta-analyses on early 
growth traits (see the next paragraph for detailed information on 
postprocessing of GWAS data for LD score analysis). LD score 
regression estimates were obtained using a regression model with 
intercept, which aims at correcting for systematic confounders in 
GWAS summary statistics such as population stratification. In 
addition, we provided SumHer (21) SNP heritability estimates due 
to the current debate on the (mainly downward) bias of LD score 
regression estimates. SumHer estimates were obtained using a 
regression model including an intercept. The estimates of heritability 
using family and twin studies were obtained from the literature 
using PubMed searches complemented with Google scholar. The 
proportion of heritability explained by common SNPs is the ratio of 
the SNP heritability obtained from LD score regression and the 
overall heritability obtained from family and twin studies.

Post hoc power analysis
We conducted a post hoc power analysis to determine the effect size 
in SD units we are powered to detect (power, 80%). The following 
experimental setup is considered to parameterize the null hypothesis: 
stage 1 meta-analysis sample size (n = 6222), the smallest minimum 
allele frequency observed among the four lead GWAS SNPs (MAF = 
0.22; most conservative), imputation quality R2 = 0.8, significance 
level P < 5 × 10−8, and genotypes assumed to be in HWE. Analysis 
was conducted as previously described (60). Briefly, the noncentrality 
parameter (NCP) gives the expected value of the test statistic under 
the null hypothesis parameterized above. The power to detect 
an effect size b > NCP is the probability of obtaining an effect 
larger or equal to NCP under the alternative hypothesis parame-
terized by the normal distribution with mean b and SD set equal to 
the SE of NCP.
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