153 research outputs found

    Impact of the initialisation on the predictability of the Southern Ocean sea ice at interannual to multi-decadal timescales

    Get PDF
    In this study, we assess systematically the impact of different initialisation procedures on the predictability of the sea ice in the Southern Ocean. These initialisation strategies are based on three data assimilation methods: the nudging, the particle filter with sequential importance resampling and the nudging proposal particle filter. An Earth system model of intermediate complexity is used to perform hindcast simulations in a perfect model approach. The predictability of the Antarctic sea ice at interannual to multi-decadal timescales is estimated through two aspects: the spread of the hindcast ensemble, indicating the uncertainty of the ensemble, and the correlation between the ensemble mean and the pseudo-observations, used to assess the accuracy of the prediction. Our results show that at decadal timescales more sophisticated data assimilation methods as well as denser pseudo-observations used to initialise the hindcasts decrease the spread of the ensemble. However, our experiments did not clearly demonstrate that one of the initialisation methods systematically provides with a more accurate prediction of the sea ice in the Southern Ocean than the others. Overall, the predictability at interannual timescales is limited to 3 years ahead at most. At multi-decadal timescales, the trends in sea ice extent computed over the time period just after the initialisation are clearly better correlated between the hindcasts and the pseudo-observations if the initialisation takes into account the pseudo-observations. The correlation reaches values larger than 0.5 in winter. This high correlation has likely its origin in the slow evolution of the ocean ensured by its strong thermal inertia, showing the importance of the quality of the initialisation below the sea ice

    Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction

    Get PDF
    Occupying about 14% of the world\u27s surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on southwest Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52-54°S). Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the 1940s, a phenomenon predating the observational record. Climate reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer. Our results suggest that modern observed high interannual variability was established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific temperatures may now be a permanent feature across the mid- to high latitudes

    Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction

    Full text link
    Occupying about 14% of the world's surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on southwest Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52-54°S). Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the 1940s, a phenomenon predating the observational record. Climate reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer. Our results suggest that modern observed high interannual variability was established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific temperatures may now be a permanent feature across the mid- to high latitudes

    Assessing recent trends in high-latitude Southern Hemisphere surface climate

    Get PDF
    Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. However, most observed trends are not unusual when compared with Antarctic paleoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability likely overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response

    Inequalities and Agencies in Workplace Learning Experiences: International Student Perspectives

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12186-016-9167-2National systems of vocational education and training around the globe are facing reform driven by quality, international mobility, and equity. Evidence suggests that there are qualitatively distinctive challenges in providing and sustaining workplace learning experiences to international students. However, despite growing conceptual and empirical work, there is little evidence of the experiences of these students undertaking workplace learning opportunities as part of vocational education courses. This paper draws on a four-year study funded by the Australian Research Council that involved 105 in depth interviews with international students undertaking work integrated learning placements as part of vocational education courses in Australia. The results indicate that international students can experience different forms of discrimination and deskilling, and that these were legitimised by students in relation to their understanding of themselves as being an ‘international student’ (with fewer rights). However, the results also demonstrated the ways in which international students exercised their agency towards navigating or even disrupting these circumstances, which often included developing their social and cultural capital. This study, therefore, calls for more proactively inclusive induction and support practices that promote reciprocal understandings and navigational capacities for all involved in the provision of work integrated learning. This, it is argued, would not only expand and enrich the learning opportunities for international students, their tutors, employers, and employees involved in the provision of workplace learning opportunities, but it could also be a catalyst to promote greater mutual appreciation of diversity in the workplace

    Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes

    Get PDF
    Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase
    • 

    corecore