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Tropical forcing of increased Southern Ocean climate variability revealed
by a 140-year subantarctic temperature reconstruction

Abstract
Occupying about 14% of the world's surface, the Southern Ocean plays a fundamental role in ocean and
atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual
variability and a dearth of instrumental observations before the 1950s limits our understanding of how
marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic
forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on
southwest Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52-54°S).
Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates
a significant increase in variability from the 1940s, a phenomenon predating the observational record. Climate
reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an
atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the
austral spring and summer. Our results suggest that modern observed high interannual variability was
established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific
temperatures may now be a permanent feature across the mid- to high latitudes.
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Abstract. Occupying about 14 % of the world’s surface, the
Southern Ocean plays a fundamental role in ocean and at-
mosphere circulation, carbon cycling and Antarctic ice-sheet
dynamics. Unfortunately, high interannual variability and a
dearth of instrumental observations before the 1950s limits
our understanding of how marine–atmosphere–ice domains
interact on multi-decadal timescales and the impact of an-
thropogenic forcing. Here we integrate climate-sensitive tree
growth with ocean and atmospheric observations on south-
west Pacific subantarctic islands that lie at the boundary of
polar and subtropical climates (52–54◦ S). Our annually re-
solved temperature reconstruction captures regional change
since the 1870s and demonstrates a significant increase in
variability from the 1940s, a phenomenon predating the ob-
servational record. Climate reanalysis and modelling show a
parallel change in tropical Pacific sea surface temperatures
that generate an atmospheric Rossby wave train which prop-
agates across a large part of the Southern Hemisphere dur-
ing the austral spring and summer. Our results suggest that
modern observed high interannual variability was established
across the mid-twentieth century, and that the influence of
contemporary equatorial Pacific temperatures may now be a
permanent feature across the mid- to high latitudes.

1 Introduction

Observations during the second half of the twentieth cen-
tury suggest significant but spatially complex variability in
atmospheric and ocean temperature and circulation (Figs. 1
and S1 in the Supplement), as well as ice-sheet dynam-
ics, across the mid- to high latitudes of the Southern Hemi-
sphere (Jones et al., 2016). These factors include an inten-
sification of western boundary currents (Wu et al., 2012),
a strengthening and poleward shift in the summer westerly
winds associated with a positive trend in the southern annular
mode (SAM) (Marshall, 2003; Abram et al., 2014; Thomp-
son et al., 2011), winter–spring warming over West Antarc-
tica (Steig et al., 2009), latitudinal shifts in the subantarc-
tic and polar fronts associated with the Antarctic Circumpo-
lar Current (ACC) (Langlais et al., 2015), spatial and tem-
poral changes in sea ice extent (Turner et al., 2015; Hobbs
et al., 2016), and Antarctic ice-sheet mass loss (Pritchard et
al., 2012). Unfortunately, major uncertainties exist regarding
their trends and interaction(s) due to high interannual vari-
ability (Turner et al., 2016; Fogt et al., 2012) and limited
instrumental records prior to the 1950s (Goosse and Zunz,
2014; Jones et al., 2016). As a result, analysis has relied on
modelling studies to infer multidecadal-to-centennial vari-
ability (Freitas et al., 2015; Wang and Dommenget, 2016)
and explore regional and global teleconnections (Langlais et
al., 2015; Goosse and Zunz, 2014), both of which may have
changed with anthropogenic forcing. The above uncertain-
ties are particularly acute in the South Pacific Ocean and ad-
joining regions because of the expression of central tropical

ocean–atmospheric interactions associated with the El Niño–
Southern Oscillation (ENSO) (Abram et al., 2014; Schnei-
der et al., 2012; Turney et al., 2016a; Ciasto and Thompson,
2008; Ding et al., 2012).

Late twentieth century climate over the Southern Ocean
is characterised by high interannual variability (Jones et al.,
2016; Turner et al., 2016), in part driven by changes in
the strength and location of mid-latitude westerly airflow
(Thompson et al., 2011). SAM and ENSO play a domi-
nant role in this as modes of large-scale variability (Fogt
et al., 2012; Ciasto and Thompson, 2008). Of particular
significance, the positive post-1960s trend in the mid- to
high-latitude pressure gradient described by SAM reaches
its maximum during the austral summer (Jones et al., 2016),
marked by a zonally symmetric poleward displacement of
the jet stream and strengthening of the prevailing surface
westerly air flow centred on 50◦ S (Marshall, 2003; Thomp-
son et al., 2011) (Fig. S2). In contrast, ENSO is associ-
ated with spatially different temperature and wind relation-
ships across mid- to high latitudes (Ciasto and Thompson,
2008) (Fig. S3), with atmospheric pressure anomalies expe-
riencing their greatest amplitude during austral spring and
summer in the South Pacific (Fig. S4). The pattern resem-
bles a zonally asymmetric wave train of atmospheric pres-
sure anomalies extending from New Zealand to the West
Antarctic Coast, and into the Weddell Sea–South Atlantic
(the so-called Pacific–South American or PSA mode) (Mo
and Higgins, 1998; Trenberth et al., 2014, 1998; Karoly,
1989). The PSA has been shown to introduce zonal asym-
metries in the seasonal SAM structure in the South Pacific
(Fogt et al., 2012). Overall, the poleward migration of storm
tracks reduces air-to-sea heat fluxes through increased cloud
cover and evaporative heat loss from the ocean (Thompson
et al., 2011; Ciasto and Thompson, 2008), while increas-
ing oceanic Ekman transport of cool surface water (Ciasto
and Thompson, 2008) and a poleward eddy heat flux (Sallée
et al., 2012). As a result, sector-specific poleward shifts in
westerly airflow have led to contrasting late twentieth cen-
tury ocean–atmospheric trends. How the above modes of
variability influenced Southern Ocean climate and ocean dy-
namics before the period of satellite observations remains
highly uncertain (Jones et al., 2016). An improved network
of quantified climate-sensitive proxy records across the mid-
to high-latitudes is crucial for exploring climate teleconnec-
tions through time (Jones et al., 2016; Abram et al., 2014;
Turney et al., 2016a, 2015).

The subantarctic islands of the southwest Pacific lie at
hemispherically important atmospheric and ocean bound-
aries, offering considerable potential for understanding long-
term climate trends and the potential role of tropical forc-
ing on high-latitude change. Campbell (52.54◦ S, 169.14◦ E)
and Macquarie (54.50◦ S, 158.95◦ E) islands are located just
north of the main front of the ACC and south of the Sub-
tropical Front (also known as the Subtropical Frontal Zone
or Convergence) (Fig. S6) (Streten, 1988; Sokolov and Rin-

Clim. Past, 13, 231–248, 2017 www.clim-past.net/13/231/2017/
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Figure 1. Ocean–atmosphere coupling in the Southern Hemisphere. (a) Significant (p < 0.05) austral summer (December–February) sea
surface temperature (SST ◦C decade−1; shading) and 925 hPa winds (vectors) trends since 1979. Temperatures based on SSTs from the
HadISST dataset (Rayner et al., 2003); winds from ERA-Interim (Dee et al., 2011). Key sites discussed in text are shown: Macquarie Island
(MI), Campbell Island (CI), Antipodes Island (AI), Ferrigno (F), Bryan Coast (BC), Gomez (G) (Thomas et al., 2008, 2015), Falkland
Islands (FI), and South Georgia (SG) (Turney et al., 2016a). Overlaid in green are the three main fronts of the Antarctic Circumpolar Current
(Sallée et al., 2012). (b) Annual (July–June) and spring–summer (October–March) air temperatures at Macquarie Island. Dashed lines denote
range of the Australasian Antarctic Expedition temperatures (AAE; CE 1912–1915). Period of satellite observations (a) shown by grey bar;
dashed coloured lines denote trend in temperatures across the satellite period. (c) Monthly Macquarie Island air (red line) and sea surface
temperatures (blue line) (with 1σ ) demonstrating tight coupling between atmospheric temperature and SSTs (CE 2000–2014).

toul, 2009) in the core latitude of Southern Hemisphere west-
erly airflow (Streten, 1988), and are sensitive to Rossby wave
propagation from the tropics to the high latitudes (Adamson
et al., 1988; Ding et al., 2012) (Fig. S4). Campbell and Mac-
quarie islands have some of the longest, near-complete, con-
tinuous instrumental records in the Southern Ocean (com-
mencing 1941 and 1948 respectively) (Table S1 in the Sup-
plement) supplemented by daily atmospheric and sea surface
temperature (SST) measurements made at Macquarie Island
between common era (CE) 1912 and 1915 as part of Sir
Douglas Mawson’s landmark Australasian Antarctic Expe-
dition (AAE) (Kidson, 1946). Mawson’s observations span
4 years and resolve the seasonal cycle, therefore allowing
comparison to the continuous instrumental record from the
1940s to the present day (hereafter “the modern record”).
The time series of observed temperatures on the two islands
are highly correlated in the modern record (detrended July–
June correlation 0.801, p < 0.0001) and display the same
significant spatial correlation fields to regional and Pacific-
wide SSTs (Fig. S5), demonstrating a comparable climate
regime. As a result of anomalies in the overlying wind, the
surrounding waters are strongly influenced by variations in
northward Ekman transport of cold fresh subantarctic sur-
face water and anomalous fluxes of sensible and latent heat
at the atmosphere–ocean interface. This has produced a cool-
ing trend since 1979 (Figs. 1 and S1) (Thompson et al.,
2011; Ciasto and Thompson, 2008), making the islands ide-

ally placed to detect wind-driven changes in the north–south
SST gradient over time.

Here we extend the instrumental record by exploiting the
climate sensitivity of the southernmost-growing trees in the
subantarctic southwest Pacific to produce the first annually
resolved quantified temperature reconstruction for the re-
gion back to CE 1870. The maritime climates of Camp-
bell and Macquarie islands provide a reconstruction of air
and sea temperatures that demonstrates increasing variance
since modern records commenced in the ∼ 1940s. We inves-
tigate this time series with climate reanalysis and a three-
dimensional Earth system model of intermediate complex-
ity and identify the tropical Pacific sea surface temperatures
as the principal driver of the observed variance, propagated
by atmospheric Rossby waves during the austral spring and
summer. Climate-sensitive records across the circum-Pacific
demonstrate comparable trends, suggesting that tropical cli-
mate changes have been increasingly projected onto the mid-
to high latitudes. Subantarctic islands across the wider South-
ern Ocean provide crucially situated landmasses from which
proxy data can be generated to test hypotheses about past and
future global climate teleconnections.

www.clim-past.net/13/231/2017/ Clim. Past, 13, 231–248, 2017
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2 Methods

2.1 Subantarctic island climate datasets (Macquarie
and Campbell islands)

The AAE 1912–1915 atmospheric observations were taken
from the isthmus at the northern end of Macquarie Island
(Newman, 1929), in the same immediate area as the cur-
rent Australian Antarctic Division Meteorological Station,
established in late 1948 (54.50◦ S, 158.95◦ E). The daily and
monthly meteorological data from Macquarie Island were
obtained from the reduced AAE dataset (Newman, 1929)
and since 1948, the Bureau of Meteorology (http://www.
bom.gov.au/climate/data-services/). Twice-daily SST mea-
surements were also taken from Buckles Bay during the AAE
(Newman, 1929), with subsequent observations made again
during the 1950s and 1960s (Loewe, 1968, 1957); unfor-
tunately no direct measurements exist between 1916–1950.
The next available continuous SST observations that can be
compared to the 1912–1915 record are remote MODIS satel-
lite (Terra) measurements providing 4 km-resolved 11 µm
daytime observations since 2001 (data accessed via https:
//modis.gsfc.nasa.gov/); other satellite products do not re-
solve at a spatial scale that allows a direct comparison to
the localised measurements made at Macquarie Island. Al-
though the satellite data are from a larger area than the
AAE observations, the expedition vessel the S.Y. Aurora
made SST measurements across Buckles Bay and demon-
strated similar absolute values as those observed inshore,
providing confidence that the comparisons are robust (Kid-
son, 1946). A meteorological station has operated in Per-
severance Harbour, Campbell Island (52.54◦ S, 169.14◦ E),
since 1941. The dataset used here was obtained from the
New Zealand National Climate Database (http://cliflo.niwa.
co.nz/). Near-complete instrumental records have been main-
tained on Campbell and Macquarie islands since observa-
tions began with no complete months missing from any of
the datasets (Table S1).

2.2 Meteorological observations

To extend the satellite record for the southwest Pacific, we fo-
cused on the subantarctic Macquarie and Campbell islands.
For comparison to the AAE 1912–1915 record, modern-day
Macquarie Island temperature measurements were compared
in 4-year bins (Tables S2 and S3). The interannual variabil-
ity in the most complete dataset (that from Macquarie Island)
is relatively large. Student’s t tests (two-tailed) of the 4-year
average monthly data relative to 1912–1915 indicate that the
most consistently warmer conditions are during February–
April (Tables S2 and S3). This analysis illustrates a trend to-
wards seasonally restricted warming only during the late aus-
tral summer and autumn. Intriguingly, no pervasive warming
is observed across the austral spring and most of the summer
when ENSO and SAM are today known to play a dominant

role on regional climate variability (Ciasto and Thompson,
2008).

2.3 Tree-ring reconstruction (dendrochronology)

To develop an annually resolved temperature reconstruction
for the southwest Pacific that will extend the modern in-
strumental record we sampled 30 Dracophyllum spp. trees
from Campbell Island during 2013 as part of the Australasian
Antarctic Expedition 2013–2014, and during further field-
work in late 2014 (Fig. 2). Here two Dracophyllum species
(D. longifolium, D. scoparium and hybrids) form the south-
ernmost growing evergreen shrubs and small trees in the
southwest Pacific (with no Dracophyllum on Macquarie Is-
land) (Wilmshurst et al., 2004; Turney et al., 2016b). Draco-
phyllum spp. are known to be responsive to warmer temper-
atures and capable of reaching ages of > 200 years (Harsch
et al., 2014), providing an opportunity to derive a continuous
proxy record of temperature in this key region spanning more
than a century. Because of the coherent climate trends on
both islands, the relationship of tree-ring growth to Campbell
and Macquarie Island temperature records was explored us-
ing bootstrapped correlation function analysis in the bootRes
R software package (Zang and Biondi, 2012) to identify
the monthly temperature responses, followed by a split pe-
riod for calibration/verification analysis to test the regression
model robustness using the reduction of error (RE) and the
coefficient of efficiency (CE) (Fig. 2 and Table S4). Based
on those results, we selected an austral “growing season”
window for linear regression modelling to produce spring–
summer (October–March) temperature reconstructions for
Campbell and Macquarie islands.

After crossdating and measuring, the 30 tree se-
ries were standardised to remove biological trends us-
ing the RCSigFree program (http://www.ldeo.columbia.edu/
tree-ring-laboratory/resources/software). Within the pro-
gram, various options are available for the conversion of the
annual ring width measurements into indices and we adopted
the use of a more flexible regression model, the Friedman Su-
per Smoother (Friedman, 1984), to remove the growth trends.
The ring width measurements were first power transformed
and then subtracted from the regression model to produce
indices and avoid possible outlier bias (Cook and Peters,
1997). Following this, the signal-free method was applied to
minimise trend distortion and end-effect biases in the final
chronology (Fig. 2) (Melvin and Briffa, 2008). Comparison
between the detrended series and average raw measurements
(Fig. 2) demonstrate the standardisation process (or any of
the other models) did not make the series heteroscedastic.
The relationship of the tree-ring chronology to the Camp-
bell and Macquarie Island temperature records and Southern
Annular Mode (SAM) reconstruction (Visbeck, 2009) was
explored using bootstrapped correlation function analysis in
the bootRes R software package (Figs. 2 and S17) (Zang and
Biondi, 2012). bootRes uses 1000 bootstrapped samples to

Clim. Past, 13, 231–248, 2017 www.clim-past.net/13/231/2017/
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Figure 2. Developing a temperature-sensitive tree-ring record from the subantarctic Pacific. (a) Dracophyllum raw tree-ring chronology
(green line) with different standardisation outputs (various coloured lines), expressed population signal (EPS; thick red line) and sample size
of trees (blue area). Bootstrap correlation function of the Dracophyllum tree-ring chronology to instrumental records of monthly temperatures
from Campbell Island (b) and Macquarie Island (c) with error statistics for early (CE 1949–1980) and late (1981–2012) calibration periods.
Darker bars indicate months with statistically significant correlations (p < 0.05).

compute Pearson’s correlation coefficients between the tree-
ring parameter and each of the climatic predictors and then to
test their significance at the 0.05 level. Bootstrap samples are
drawn at random with replacement from the selected time in-
terval. Median correlation coefficients are deemed significant
if they exceed, in absolute value, half the difference between
the 97.5th quantile and the 2.5th quantile of the 1000 esti-
mates (Biondi and Waikul, 2003). In the plots, the darker bars
indicate a coefficient significant at p < 0.05 and the lines
represent the 95 % confidence interval.

Based on these results, the Campbell Island “growing
season” of monthly temperatures from October to March
(six months, spanning from spring to autumn) was se-
lected for reconstruction using the Dracophyllum chronology
for the period 1870–2013 (Expressed Population Signal or
EPS> 0.85). Similarly for Macquarie Island, the same grow-
ing season was selected (October–March; six months). For
SAM, we find the most significant relationship was for July–
October. The program PCReg (http://www.ldeo.columbia.
edu/tree-ring-laboratory/resources/software) was used to
carry out a linear regression model of the tree-ring chronol-
ogy to the selected growing-season windows for both Camp-
bell and Macquarie islands. A split period for calibra-
tion/verification analysis was used (Cook and Kairiukstis,
1990) to test the regression model robustness. Our model for
Campbell Island passed both the CE and RE tests (i.e. pos-

itive) indicating that the model was skillful in reconstruct-
ing observed variations, however the verification results for
Macquarie Island were weaker and just failed for the more
rigorous CE test (Table S4). We then used the full period
of instrumental data (1949–2012 for Campbell Island and
Macquarie Island) to develop final models and reconstruct
“growing-season” temperatures back to 1870 for both islands
(Fig. 3). The prediction intervals (90 % quantile limits) as-
sociated with the reconstructed temperatures were produced
using a fixed t statistic for scaling the uncertainties (Olive,
2007). Importantly, the chronology is derived from a mix-
ture of tree ages (i.e. the oldest started in CE 1747 and the
youngest in 1958) and is not made up of a single cohort of
similar aged trees that have matured across the same period.

2.4 Spectral analysis

To investigate climate periodicities we undertook multi-
taper method (MTM) analysis on the Dracophyllum tem-
perature reconstruction (Fig. 4), tree chronology (Fig. S12)
and annual southwest Pacific SSTs (Fig. S13) (the latter de-
rived from Hadley Centre Ice and Sea Surface Temperature;
HadISST) (Rayner et al., 2003) using a narrowband sig-
nal and red noise significance (with a resolution of 2 and
3 tapers) (Thomson, 1982) with the software kSpectra ver-
sion 3.4.3 (3.4.5).

www.clim-past.net/13/231/2017/ Clim. Past, 13, 231–248, 2017
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2.5 Characterising water mass sources
and ocean fronts

In order to characterise the decadally averaged source(s)
of water masses near Macquarie and Campbell islands, we
performed an experiment with virtual particles in an eddy-
resolving ocean model (the Japanese Ocean model For the
Earth Simulator or OFES) (Masumoto et al., 2004), which
has a 1/10◦ horizontal resolution and near-global coverage
between 75◦ S and 75◦ N, and has a demonstrated ability for
modelling changes in the Southern Ocean between 2000 and
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the Dracophyllum-derived growing season temperature reconstruc-
tion for Macquarie Island since CE 1870.

2010 (van Sebille et al., 2012) (Fig. S6). While OFES pre-
cludes us from modelling the warming across the 1970s, it
does allow us to hindcast the origin of the waters down to a
depth of 400 m using Lagrangian analysis in the most recent
decade. Assuming a steady-state ocean circulation, this anal-
ysis allows us to refine our understanding of the sources and
by association boundaries of water masses surrounding Mac-
quarie and Campbell islands. The model was forced using the
National Centers for Environmental Prediction (NCEP) wind
and flux fields and output is available as 3-day averages (Qin
et al., 2014).

Particles were released every three days between 1 Jan-
uary 2005 and 31 December 2010 on a latitude–depth sec-
tion at 170◦ E, every 0.1◦ in latitude between 60 and 45◦ S
and every 50 m in depth between 25 and 300 m, for a to-
tal of 318 288 particles. The particles were then advected
backwards in time within the three-dimensional OFES ve-
locity fields using the fourth-order Runge–Kutta method as
implemented in the Connectivity Modeling System (CMS)
version 1.1b (Paris et al., 2013). The particles were advected
for 5 years, or until they reached 30◦ S or 0◦ E. Once all the
particles were integrated, they were categorised into those
that start in the Agulhas Current (at 30◦ S and between 28
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and 40◦ E) and those that start in the East Australian Current
(at 30◦ S and between 150 and 160◦ E).

Using the western Indian Ocean boundary Agulhas Cur-
rent as a tracer for the Subtropical Front (and the southern
limit of the Subtropical Gyre) (Wang et al., 2014) we iden-
tify a pathway of particles flowing from the Cape of Good
Hope to the southwest Pacific subantarctic islands (Fig. S6).
The particles that connect to the region around Macquarie
and Campbell islands follow a very narrow and almost linear
path southeastward across the Indian Sector of the Southern
Ocean. The fastest particles reach Macquarie Island less than
2 years after release in the Agulhas Current, with the major-
ity arriving between 3 and 4 years after release. In contrast,
little leakage from the East Australian Current is observed,
with approximately 6 times more Agulhas particles delivered
to the southwest Pacific subantarctic than the East Australian
Current (EAC) (Wu et al., 2012) (Fig. S6).

2.6 Modelling transient change

General circulation models (GCMs) involved in the Fifth
Coupled Model Intercomparison Project (CMIP5) (Taylor
et al., 2011) struggle to simulate the observed internal
variability and/or seasonal cycle over the Southern Ocean
(Wang et al., 2015; Zunz et al., 2013), supported by the
poor correlations observed between our reconstructed and
CMIP5 October–March temperatures (Table S5). Here we
take an alternative approach using LOVECLIM1.3, a three-
dimensional Earth system model of intermediate complex-
ity (Goosse et al., 2010) that includes representations of the
ocean and sea ice (CLIO3) (Goosse and Fichefet, 1999), at-
mosphere (ECBilt2) (Opsteegh et al., 1998), and vegetation
(VECODE) (Brovkin et al., 2002). The three-level quasi-
geostrophic atmospheric model has a horizontal resolution
approximating 5.6◦× 5.6◦ (T21) whilst the ocean general
circulation model is coupled to a sea-ice model with 20 un-
evenly spaced vertical levels and a horizontal resolution of
3◦× 3◦. The vegetation component simulates the evolution
of grasses, trees and desert, with the same horizontal res-
olution as ECBilt2. The experiments analysed here cover
the period CE 1850–2009, driven by the same natural (so-
lar and volcanic) and anthropogenic (greenhouse gas, sul-
fate aerosols, land use) forcings (Goosse et al., 2006) as the
ones adopted in the historical simulations performed in the
framework of CMIP5 (Taylor et al., 2011). The initial condi-
tions are derived from a numerical experiment covering the
years CE 1–1850 using the same forcing, in order to take into
account the long memory of the Southern Ocean (Goosse
and Renssen, 2005). For the CE 1850–2009 simulations, the
model was forced to follow the observations of surface tem-
perature from the HadCRUT3 dataset (Brohan et al., 2006)
using a data assimilation technique based on particle filter-
ing (Goosse et al., 2006; Dubinkina and Goosse, 2013). A
simulation without additional freshwater flux (no freshwater
flux) with data assimilation, from CE 1850 to 2009, was anal-

ysed here (Zunz and Goosse, 2015), allowing direct compar-
ison between climate parameters and SST trends across the
Southern Ocean. SSTs for the Macquarie–Campbell Island
sector and anomalies in zonal wind stress are shown in Figs
8 and 9 respectively.

3 Results and discussion

3.1 Modern climate changes

Comparing atmospheric temperatures during the 1912–1915
AAE observational period and the modern record from
Macquarie Island demonstrates high interannual variability
(Fig. 1b). Whilst the temperature trend across the period of
satellite observations appears to show a cooling trend in the
southwest Pacific, significant warming is observed across the
annual and spring–summer months from the 1960s and peaks
during the 1980s (Figs. 1 and S7, Table S2). No parallel
changes are observed in wind direction (Fig. S8) while the
sunshine time series appears to trend in the opposite direc-
tion to that expected (Fig. S9). The number of ocean obser-
vations are more limited, but comparable warming (0.5 ◦C)
was observed across the 1950s–1960s with MODIS satel-
lite measurements (MODerate Imaging Spectroradiometer;
2000–2014) demonstrating slightly cooler waters during the
present day (though still 0.3 ◦C warmer than the AAE pe-
riod) (Table S3). A similar long-term trend is also observed
with air and sea temperatures at Campbell Island (Morrison
et al., 2015). Importantly, because of their small size and
highly maritime climate, atmospheric temperatures on the is-
lands parallel the seasonal SST cycle (Fig. 1c), indicating a
tight thermal coupling between air and sea surface tempera-
tures (Thompson et al., 2011; Kidson, 1946; McGlone et al.,
2010), providing a sensitive terrestrial measure of Southern
Ocean conditions.

3.2 Changing climate variability

The Dracophyllum reconstructions extend the surface air
temperature record for the southwest Pacific sector of the
Southern Ocean back to CE 1870 (Fig. 3). We find highly
variable growing-season (spring–summer) temperatures that
parallel meteorological observations on the subantarctic is-
lands for the period of overlap (including the original AAE)
(Fig. 3), with a trend towards increasing temperatures from
the 1960s that reached a maximum during the late 1980s
(∼ 1 ◦C warmer on Macquarie Island compared to period
1912–1915). Peak temperatures of the 1980s, however, were
not sustained in the southwest Pacific through to present day
(Fig. 1). Instead, a notable feature of our 140-year recon-
struction is the long-term change in variability captured by
a 30-year running standard deviation, regardless of the stan-
dardisation method used (Figs. 3c and S11). We observe a
sustained increase from the ∼ 1940s compared to interme-
diate levels of variance during the late nineteenth century
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and a minimum during the first half of the twentieth century.
The high number of replicated trees across the reported series
means we can discount changing sample depth as the cause
of increasing variance. Removing extreme values centred on
1956, 1979, and 1986 does not substantially change the shift
to higher variance in the second half of the twentieth cen-
tury (Fig. S10), demonstrating that the long-term trend is ro-
bust. To test for the significance of this change, we compared
the variance across the tree-ring record (CE 1870–1941 vs.
1941–2012) and found the second half of the twentieth cen-
tury is significantly larger for all standardisation approaches
(Friedman F and Bartlett’s K squared tests p = 0.0055; Ta-
ble S6), suggesting a shift in climate to one characterised by
pervasive higher variability.

To further investigate the change in temperatures across
the record we undertook multi-taper method (MTM) spec-
tral analysis on the reconstructed air temperature and associ-
ated tree-ring index (Figs. 4 and S12). We find the strongest
periodicities in growing season temperatures over two nar-
row windows, 3.1 and 2.4 years (all above 95 % confidence),
identical to those recognised in regional SSTs extracted from
HadISST (Rayner et al., 2003) (Fig. S13). Hovmöller plots
of satellite-observed SSTs between 45 and 55◦ S confirm
a pattern of alternating warm and cool temperatures in the
southwest Pacific subantarctic islands with these periodici-
ties (Fig. S14). Our new extended temperature series there-
fore indicates the late nineteenth and early twentieth century
climate was characterised by low interannual variability with
increasing amplitude in the 3.1 and 2.4-year bands from the
∼ 1940s and late 1960s respectively (Fig. 4b). Recent work
by Chelton and Risien (2016) suggest that there is an increase
in standard deviation in HadISST from 1949. Our tree-ring
temperature reconstruction, however, shows a real variance
increase that is independent of this artifact in the observa-
tional data. We therefore conclude the increased amplitude
of the 3.1 and 2.4-year bands is a robust climate feature in
the southwest Pacific since the 1940s.

3.3 Marine population changes

Recent work has illustrated how multi-stressors (including
climate variability) can impact on Southern Ocean biota
(Boyd et al., 2015) and have potentially dramatic biological
responses across different trophic levels (Trathan et al., 2007;
Constable et al., 2014), including reduced breeding success
(Lea et al., 2006). Intriguingly, the observed increase in vari-
ance reported here appears to coincide with a regional or-
der of magnitude decline in the populations of many marine
species across the southwest Pacific (spanning Macquarie Is-
land to the Antipodes Islands), including penguins and ele-
phant seals (Weimerskirch et al., 2003; Morrison et al., 2015;
Childerhouse et al., 2015; Moore et al., 2001; Baker et al.,
2010). Top marine predators can provide an integrated view
of an ecological system, offering a measure of the impact of
climate changes on the availability of food supplies (abun-

dance and distribution), and on feeding and breeding habi-
tats (Jenouvrier et al., 2003). Whilst not a focus of the current
study, the following provides a brief summary of penguin and
elephant seal population trends as a basis for comparison to
the climate and ocean trends and variability reported here.

In the New Zealand subantarctic there have been pro-
nounced declines in the numbers of eastern rockhopper pen-
guins (Eudyptes filholi) at Campbell Island, and both rock-
hopper and erect-crested penguins (E. sclateri) on the An-
tipodes Islands (49.68◦ S, 178.75◦ E) (Table S7). On Camp-
bell Island, the 1940s breeding population of rockhop-
per penguins was estimated at 1.6 million birds, declining
through the 1950s followed by a brief resurgence in numbers,
before a further decline that began no later than the mid-
1970s (Cunningham and Moors, 1994). By 2012, rockhop-
per numbers on Campbell Island had suffered a 95.5 % de-
cline (of which 94 % had occurred by the mid-1980s) (Mor-
rison et al., 2015). Allowing for a lag of several years for
chicks to reach breeding age, the changes in rockhopper pen-
guin numbers correlate with changes in sea water tempera-
tures recorded in Perseverance Harbour which increased to
a peak between 1945 and 1950, declined between 1950 and
1965, then increased sharply by 1970 (Morrison et al., 2015;
Cunningham and Moors, 1994). For the Antipodes, data on
the decline in both eastern rockhopper and erect-crested pen-
guin populations cover a shorter period, but are more ro-
bust. Whole-island group surveys have been conducted on
three occasions and, although there were some differences
in counting methodology and time of year in which counts
were made, the decline in both species has been substantial;
in 2011 there were only about 5 % as many rockhopper pen-
guins and fewer than half as many erect-crested penguins as
there were in 1978 (Table S7) (Hiscock and Chilvers, 2014).
Whilst no climate data are available from the Antipodes Is-
lands, this subantarctic archipelago falls within the same cli-
mate zone as Macquarie and Campbell islands (Fig. 1) and
is therefore assumed to have experienced the same long-term
trend in air and sea surface temperatures.

Land-based threats do not account for the declines ob-
served. Nesting habitat availability is unchanged and intro-
duced mammals are not generally considered to pose a threat.
On Campbell Island, Norway rats (Rattus norvegicus) were
present until eradicated in 2001, while feral cats (Felis catus)
died out naturally between 1979 and 1999. However, rats are
thought to only prey on eggs once they are broken through
other causes and there was no evidence to suggest that the
few cats present preyed on rockhopper penguins, their eggs
or chicks (Cunningham and Moors, 1994). Avian cholera
was recorded in Campbell Island rockhopper penguins in
1885/86 and 1986/87, but the numbers killed do not account
for the magnitude of the declines recorded (Cunningham and
Moors, 1994). Feral sheep (Ovis aries) were present (since
eradicated) but penguin numbers declined in both accessible
and inaccessible colonies (Cunningham and Moors, 1994).
On the Antipodes Islands, house mice (Mus musculus) are
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the only introduced mammal and they are too small to pose a
threat to penguins.

Similar to penguin populations, the number of elephant
seals (Mirounga leonina) have also declined on both Camp-
bell and Macquarie islands since the 1940s (McMahon et al.,
2005) with the decrease being most marked on Campbell Is-
land which is further from the polar front (Antarctic Conver-
gence), considered to be the optimum foraging habitat for the
species (Taylor and Taylor, 1989). Pup production on Camp-
bell Island declined from 191 individuals in 1947, 11 in 1984,
to just five in 1986 (Taylor and Taylor, 1989; McMahon et
al., 2005), with the population falling from 455 before the
1970s to less than 10 individuals in the 2000s (McMahon
et al., 2005). On Macquarie Island, the population decreased
from around 183 000 in 1949 to some 76 000 in 2001 (Hin-
dell and Burton, 1987), and has since apparently stabilised
(van den Hoff et al., 2007). The most likely explanation for
those declines are decreases in marine food availability due
to changes in the marine environment.

Because of the scarcity of island breeding sites and their
limited foraging range while breeding, subantarctic penguins
are particularly susceptible to climate change and associated
changes in marine parameters. Penguins, elephant seals, and
other top predators may respond to changes in food avail-
ability when marine parameters change by retracting or ex-
panding their distributions, with changes in population size
or breeding phenology (Weimerskirch et al., 2003; McMa-
hon et al., 2005). Alternatively, climate change can affect
populations due to changes in conditions ashore. For exam-
ple, at Punta Tombo in Argentina since 1960 storms have be-
come more frequent and more intense causing the deaths of
Humboldt penguin (Spheniscus humboldti) chicks (Boersma
and Rebstock, 2014). At Punta Tombo, chick deaths due to
storms were additive to deaths due to other factors. It is
important to note, however, that there is usually a lag be-
tween climate change and any subsequent change in penguin
(or other predator) population; the lag time depending on
whether climate affects adult or chick survival, recruitment
or some other demographic parameter (Weimerskirch et al.,
2003). Future work is now needed to investigate this relation-
ship further and identify which changes in marine parameters
may be the cause.

3.4 Investigating ocean–atmosphere teleconnections

Whilst the southwest Pacific subantarctic islands lie along the
northern edge of the ACC and south of the Subtropical Front
(Fig. S6), the absence of propagating SST signals across the
Southern Ocean suggests that movement of ocean boundaries
and/or changing input of marine western boundary currents
(Figs. S6 and S14) are not primary drivers of the observed
increased variability. An alternative scenario for the increas-
ing amplitude in the 3.1 and 2.4-year bands is a change in
atmospheric circulation. To identify a possible atmospheric
mechanism, we compared air temperatures over Macquarie

Island with estimates from ERA-Interim reanalysis (Dee et
al., 2011) and observe a significant positive correlation to
spring–summer atmospheric pressure anomalies (deseason-
alised and detrended at 850 hPa) since 1979 (Fig. 5a) and
inverse relationships with temperature and zonal and merid-
ional wind stress (Figs. 5b and S15). Cooler temperatures
over Macquarie Island are therefore associated with a centre
of relatively low pressure (at 850 hPa) south of New Zealand
and enhanced westerly and southerly airflow across a lon-
gitudinal band spanning 120 to 150◦ E (significance pfield <

0.05). A similar positive correlation to spring–summer SSTs
is observed with both Macquarie Island (Fig. 5c) and Camp-
bell Island (Fig. S5), with highly significant relationships to
a sector in the southwest Pacific (50–60◦ S, 150–170◦ E; Ta-
ble 1), supporting our earlier observation of the thermal cou-
pling between atmospheric and ocean temperatures but ex-
tending across the broader region. Although we find no evi-
dence for a sustained shift in airflow direction that parallels
the observed trend in subantarctic temperatures (Fig. S8), we
do observe a marked increase in wind strength across the late
twentieth century, with a long-term intensification (with high
variability) of winds that closely parallels air temperatures
over Macquarie Island (Fig. 5d); the original AAE data are
plotted for completeness but given uncertainties over the re-
liability of historic observations (Jakob, 2010) a direct com-
parison is not possible. This trend towards stronger winds
is accompanied by an increase in sunshine hours over Mac-
quarie Island (Fig. S9), consistent with reduced cloud cover,
but any associated increase in sensible heat flux appears to
be offset by increased airflow over cooler surface waters in
the southwest Pacific (Thompson et al., 2011). Our results,
therefore, are in line with the observed (post-1979) spring–
summer trend towards windier conditions in the southwest
Pacific (Fig. S1).

Whilst some studies have suggested a dynamical atmo-
spheric circulation response to ozone layer depletion over the
Southern Hemisphere mid-latitudes since the 1990s (Thomp-
son et al., 2011), the reconstructed 3.1 and 2.4 year period-
icities suggest a tropical teleconnection with the southwest
Pacific (Kestin et al., 1998; Adamson et al., 1988). Using the
HadISST (Rayner et al., 2003) and ERA-Interim (Dee et al.,
2011) datasets, a significant inverse correlation is observed
between subantarctic and central–eastern low-latitude Pacific
temperatures and zonal wind stress, with a relatively warm
(cool) eastern equator associated with weaker (stronger) mid-
latitude westerly winds and cooler (warmer) SSTs in the
southwest Pacific (Figs. 5a–c and S5). Comparison to differ-
ent measures of tropical Pacific SSTs and atmospheric cir-
culation indicate the most significant relationship with sub-
antarctic spring–summer temperatures is the Nino 3 region
(correlation −0.592, p < 0.001) (Table 1).

To elucidate the mechanism by which changes in the
tropical Pacific may be projected onto the high latitudes,
we explored the relationship between Nino 3 temperatures
and Southern Hemisphere atmospheric circulation using data
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Figure 5. Climate controls on temperature over Macquarie Island. Spatial correlations between detrended and deseasonalised Macquarie
Island mean monthly atmospheric temperatures (October–March) and 850 hPa height (a), zonal wind stress using ERA-Interim31 (b) and
sea surface temperature (HadISST; c) (Rayner et al., 2003) for the period 1979–2013 (pfield < 0.05). Note: Campbell Island (CI) and the
Antipodes Islands (AI) fall within the region of greatest correlation to SSTs in the southwest Pacific. The southwest Pacific (SW Pacific;
50–60◦ S, 150–170◦ E) and Nino 3 regions also shown. For comparison, mean seasonal (October–March) daily wind run (kilometres) for
the meteorological station at Macquarie Island (source: Bureau of Meteorology) with comparison to average from the Australasian Antarctic
Expedition (1912–1915) with 1σ uncertainty (d). Note, the period of decreased wind speed across the 1980s coincides with maximum air
temperatures over Macquarie Island (see Fig. 3).
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Table 1. Correlations and significance of relationship between subantarctic island air temperatures and measures of regional (50–60◦ S,
150–170◦ E) and equatorial Pacific sea surface temperature (SST) and atmospheric circulation. Regional and Nino temperature anomalies
as calculated from HadISST (Rayner et al., 2003); the Southern Oscillation Index (SOI) as reported by Ropelewski and Jones (1987).
Deseasonalised and detrended correlations derived for the period CE 1979 to 2014. Significance indicated as follows: a p < 0.05, b p < 0.01,
and c p < 0.001 (latter given in bold).

SW Pacific Nino 4 Nino 3.4 Nino 3 Nino 1+ 2 SOI

Macquarie Is.

July–June 0.813c
−0.392a

−0.512b
−0.563c

−0.558c 0.470b

October–March 0.835c
−0.396a

−0.523b
−0.596c

−0.614c 0.475b

Campbell Is.

July–June 0.754c
−0.412a

−0.514b
−0.546c

−0.531c 0.458c

October–March 0.782c
−0.409a

−0.534b
−0.592c

−0.582c 0.473b

Figure 6. Rossby wave propagation from the tropical Pacific during the austral spring–summer. Low-to-high-latitude atmospheric telecon-
nections during the austral spring and summer (October–March). Schematic showing extratropical Pacific–South America (PSA) Rossby
wave train (red arrows) associated with low- and high-pressure systems generated by anomalous equatorial upper-level divergence flow
(Trenberth et al., 1998); enhanced southerly airflow across the West Antarctic coastline extends into the South Atlantic during anomalously
high temperatures in the Nino 3 region (a). Spatial correlations between detrended and deseasonalised Nino 3 sea surface temperature
(Rayner et al., 2003) (October–March) and 850 hPa height (b) and zonal wind stress (c) using ERA-Interim (Dee et al., 2011) for the period
1979–2015. Location of key sites are shown. Significance pfield < 0.05.

from ERA-Interim (Dee et al., 2011) (Fig. 6). We observe
what appears to be a Rossby wave train similar to the PSA
climate mode of variability during the austral spring-summer
(Ding et al., 2012; Mo and Higgins, 1998; Trenberth et al.,
1998). We find that post-1979, warmer temperatures in the
Nino 3 region leads to deep convection and upper-level diver-
gence flow (at 300 hPa) (Fogt et al., 2012; Ding et al., 2012;
Trenberth et al., 1998) (Fig. S16), apparently forcing an at-
mospheric Rossby wave train southeast into the extratropics
manifested as cyclonic anomalies south of New Zealand –
consistent with the relationship observed with Macquarie Is-
land temperatures (Fig. 5) – that extend across the Pacific
as anticyclonic anomalies in the Amundsen–Bellingshausen
seas and cyclonic anomalies off the east coast of South Amer-

ica (Ciasto and Thompson, 2008; Mo and Higgins, 1998).
Lead–lag analysis demonstrates the atmospheric signal prop-
agates over southern New Zealand during the late austral
winter and reaches the Amundsen–Bellingshausen seas by
the summer (Fig. S17). Our results support previous stud-
ies that find the PSA signal precedes peak temperatures by
approximately one season and abruptly weakens during the
austral summer (Schneider et al., 2012) (Figs. S4 and S17).

With the above tropospheric pressure changes (Fig. 6) we
suggest that warmer Nino 3 temperatures are associated with
stronger westerly airflow over the southwest Pacific sub-
antarctic islands and west Antarctic coast, accompanied by
enhanced southerly airflow across the Antarctic Peninsula
that extends into the South Atlantic. Hovmöller plots show
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Figure 7. Changing Southern Annular Mode (SAM) relationships through the twentieth century. Running 30-year correlations (a) and
bootstrap correlations (b, c) between hemispheric-wide and sector-specific SAM reconstructions (July–October) (Visbeck, 2009) and the
Dracophyllum series. Bootstrap correlation periods obtained by halving the SAM dataset spanning 1890 to 2000. The dark bar indicates that
only the Australasian SAM has a statistically significant correlation to the temperature-sensitive tree-ring series during the post-1940s period
for the austral winter and early spring (p < 0.05).

an alternating pattern of warm–cold surface temperatures be-
tween the southwest Pacific and Amundsen–Bellingshausen
seas using both the HadISST (Rayner et al., 2003) and
Reynolds v2 SST (Smith and Reynolds, 2005) datasets
(Fig. S14), consistent with atmospheric Rossby wave prop-
agation and regional ocean surface responses. Running 30-
year correlations between the Dracophyllum series and mea-
sures of westerly airflow, however, suggests no relationship
with a hemispheric-wide reconstruction of SAM that extends
back to CE 1884 (Fig. 7a) (Marshall, 2003; Visbeck, 2009).
Regional monthly changes in the structure of SAM are now
recognised and allow sector-specific analysis (Fogt et al.,
2012; Ding et al., 2012; Visbeck, 2009). Here we identify a
significant inverse correlation to the Australasian region for

the austral winter and spring during the post-1940s period
(p < 0.05; Fig. 7c), while the Southern Hemisphere-wide
and regional South American and African SAM reconstruc-
tions do not appear to be significant for any period across the
twentieth century (Fig. 7b and c). Previous work has demon-
strated that the PSA is an important contributor to the zonal
asymmetry in SAM (Fogt et al., 2012; Ding et al., 2012), sug-
gesting that the tropics are indeed imposing a signal on mid-
latitude westerly airflow in the southwest Pacific. However,
in contrast to earlier studies which have postulated that an-
thropogenic forcing may have changed the structure of SAM
to be more zonal (Fogt et al., 2012), our results imply that
the tropics have introduced an asymmetry to the Australasian
sector of SAM in the modern record, or this has at least be-
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Figure 8. Modelled changes in Southern Hemisphere westerly airflow over the last century. Differences in zonal October–March wind speed
(m s−1) at 800 hPa across the Southern Ocean derived from LOVECLIM1.3 (Zunz and Goosse, 2015) (a–c) and ERA-Interim (Dee et al.,
2011) (d). Locations of key sites discussed in the text are also shown.

come more common during the second half of the twentieth
century.

To investigate whether the changes in the southwest Pa-
cific subantarctic region are representative of a larger part of
the Southern Hemisphere we analysed simulations with the
three-dimensional Earth system model of intermediate com-
plexity LOVECLIM1.3 for CE 1850–2009, driven by natural
(solar and volcanic) and anthropogenic (greenhouse gases,
sulfate aerosols, land use) forcings (Zunz and Goosse, 2015)
(Fig. 8). For the 1850–2009 simulation, the model was forced
to follow the observations of surface temperature. We ex-
amined the changes in zonal wind stress between selected
decades across the twentieth century, including 1910–1919
(capturing the original AAE period) (Fig. 8). Over the past
century, we find increasingly stronger westerly winds across
the Southern Ocean with a marked intensification in the
southwest Pacific and Antarctic Peninsula during the most
recent decades with more easterly airflow over the Ross Sea
(Fig. 8c), trends also observed in estimates derived from the
ERA-Interim dataset (Fig. 8d) (Dee et al., 2011), and con-
sistent with the observational record from Macquarie Island
(Fig. 5d).

3.5 Pacific-wide changes

Although there appears to have been a long-term strength-
ening of westerly winds across key sectors of the mid-
latitudes, the Macquarie Island record suggests this has also
been accompanied by increasing variability (Fig. 5d). To ex-
plore whether this is manifested across the wider Pacific we
compared our 140-year temperature reconstruction to key
datasets (Fig. 9). Parallel changes in SST magnitude and
trend in the southwest Pacific using both the LOVECLIM
model output and HadISST (Rayner et al., 2003) is con-
sistent with our reconstruction of subantarctic island tem-
peratures (Figs. 3, 8, and 9). Intriguingly, the inferred in-
creasing westerly winds and warming Southern Ocean in the

southwest Pacific have been accompanied by a regional or-
der of magnitude decline in marine vertebrate populations
(McMahon et al., 2005; Morrison et al., 2015), suggesting
that the increased interannual temperature variability may
have played a role, and this will form a focus for future
work. Importantly, we find a comparable increase in tem-
perature and variance in the Nino 3 region, supporting our
contention that the tropics are a major driver of variability
across the subantarctic Pacific and implying similar variabil-
ity may be expressed across other sectors of the Southern
Ocean, albeit lagged by 1–3 months (Fig. S17). To test this
we utilise snow core accumulation records from coastal West
Antarctica, a region identified as sensitive to atmospheric
pressure anomalies associated with the PSA (Thomas et al.,
2008) (Fig. 6). Previous studies have reported a mid- to late
twentieth century increase in precipitation associated with a
deepening of the Amundsen Sea Low (ASL) (Thomas et al.,
2008, 2015), where strong northerlies advect warm South Pa-
cific air masses over the continent, resulting in orography-
driven precipitation over the southern Antarctic Peninsula
(Gomez ice core; Fig. 9f) and the West Antarctic coastal sites
Bryan Coast and Ferrigno (Fig. S18). Importantly, the ob-
served twentieth century increase appears to be confined to
the Antarctic Peninsula and West Antarctic coast, with the
magnitude decreasing from east (Gomez) to west (Ferrigno);
in marked contrast, the observed increase is not recorded in
the continental interior (Thomas et al., 2015). Whilst the ASL
is generally considered quasi-stationary because of the large
number of low-pressure systems in this sector of the circum-
polar trough (Hosking et al., 2013), the snow-core-derived
increases in precipitation are accompanied by an increase in
30-year running mean of the standard deviation, suggesting
increased variability in the ASL region that is unusual in the
context of the past 300 years, with the Gomez site most sen-
sitive to changes in synoptic conditions.

Whilst we cannot preclude that the climate teleconnec-
tions may have been different prior to the 1940s, the parallel
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Figure 9. Equatorial and South Pacific temperature and marine
population trends since CE 1860. Nino 3 temperature (July–June)
with running 30-year mean standard deviation of the HadISST tem-
perature series (Rayner et al., 2003) (a) compared to Campbell Is-
land and Macquarie Island running 30-year mean standard deviation
of the reconstructed temperature series (b). Orange column denotes
twentieth century temperature variability that exceeds any other pe-
riod in the record. Onset (solid line) and continuing (dashed) period
of declining rockhopper penguin and elephant seal populations in
the southwest Pacific (Morrison et al., 2015; Weimerskirch et al.,
2003) (c) shown for comparison. In addition, mean annual tem-
perature (◦C, July–June) sea surface temperatures (HadISST and
LOVECLIM model output) for the Campbell–Macquarie islands
region (d) and wider Southern Ocean (e). Note the coincident in-
crease in West Antarctic Coast (Gomez) (annual and 30-year mean
standard deviation) (Thomas et al., 2015, 2008) (g) and South At-
lantic (Falkland Islands and South Georgia) precipitation (Turney et
al., 2016a) (f).

changes in variance observed across the Pacific suggests this
is not likely (Fig. 9). This interpretation is supported by the
recently reported stepped increase in spring–summer rainfall
over the South Atlantic during the 1940s, a shift apparently
unprecedented over at least the last 6000 years, and inter-
preted to be a consequence of highly seasonal changes in at-
mospheric pressure over the Amundsen–Bellingshausen seas
(Turney et al., 2016a). Although analysis of the most recent
decade suggests a weakening of the PSA (Trenberth et al.,
2014), the observed persistently high spring–summer Pacific
variance and increase in Atlantic precipitation (Turney et al.,
2016a) suggests that Rossby wave penetration of the high lat-
itudes remains substantial when placed in the context of the
last 140 years (Fig. 9).

4 Conclusions

Our study adds to a growing body of literature showing
that increasing and variable tropical temperatures are a ma-
jor driver of spring–summer Southern Hemisphere atmo-
spheric circulation changes (Jones et al., 2016; Steig et al.,
2009; Wang and Dommenget, 2016; Schneider et al., 2012;
Ciasto and Thompson, 2008). Our findings, however, pro-
vide a long-term perspective which suggests that modern ob-
served high interannual variability was established across the
1940s, and that the influence of contemporary equatorial Pa-
cific temperatures may now be a permanent feature across
the mid- to high latitudes. Further work is now required to ex-
tend key records and explore climate variability back through
the Holocene (Cobb et al., 2013). This study emphasises the
considerable value of tree-ring and historical data for extend-
ing satellite observations of the Southern Ocean beyond 1979
(Goosse and Zunz, 2014), and combined with ocean and cli-
mate models help interpret trends in rapidly changing ter-
restrial and marine environments, including sea ice (Turner
et al., 2015; Hobbs et al., 2016). Our results offer the po-
tential to improve forecasts across the extratropical region
(Trenberth et al., 1998) and have implications for the inter-
pretation of proxy data from locations with non-stationary
relationships to modes of Southern Hemisphere atmospheric
circulation.

Data availability. The Campbell Island temperature reconstruc-
tion can be downloaded from the NOAA/World Data Center for Pa-
leoclimatology at https://www.ncdc.noaa.gov/paleo-search/study/
21590. The tree ring measurements from Campbell Island are avail-
able on the International Tree-Ring Data Bank (ITRDB) as Site
Code NEWZ117 at https://www.ncdc.noaa.gov/paleo-search/study/
21591.

The Supplement related to this article is available online
at doi:10.5194/cp-13-231-2017-supplement.
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