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Lemâıtre Centre for Earth and Climate Research, Louvain-la-Neuve,6

Belgium.7

2Centrum Wiskunde & Informatica, Amsterdam, the Netherlands.8

July 23, 20149

Abstract10

In this study, we assess systematically the impact of different initialisation proce-11

dures on the predictability of the sea ice in the Southern Ocean. These initialisation12

strategies are based on three data assimilation methods: the nudging, the particle13

filter with sequential importance resampling and the nudging proposal particle filter.14

An Earth system model of intermediate complexity is used to perform hindcast sim-15

ulations in a perfect model approach. The predictability of the Antarctic sea ice at16

interannual to multi-decadal timescales is estimated through two aspects: the spread of17

the hindcast ensemble, indicating the uncertainty of the ensemble, and the correlation18

between the ensemble mean and the pseudo-observations, used to assess the accuracy19

of the prediction. Our results show that at decadal timescales more sophisticated data20

assimilation methods as well as denser pseudo-observations used to initialise the hind-21

casts decrease the spread of the ensemble. However, our experiments did not clearly22
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demonstrate that one of the intialisation methods systematically provides with a more23

accurate prediction of the sea ice in the Southern Ocean than the others. Overall, the24

predictability at interannual timescales is limited to three years ahead at most. At25

multi-decadal timescales, the trends in sea ice extent computed over the time period26

just after the initialisation are clearly better correlated between the hindcasts and the27

pseudo-observations if the initialisation takes into account the pseudo-observations.28

The correlation reaches values larger than 0.5 in winter. This high correlation has29

likely its origin in the slow evolution of the ocean ensured by its strong thermal inertia,30

showing the importance of the quality of the initialisation below the sea ice.31

1 Introduction32

The last three decades have been characterised by an increase in sea ice extent in the South-33

ern Ocean (e.g., Comiso and Nishio, 2008; Parkinson and Cavalieri , 2012). This recent34

expansion of the Antarctic sea ice has been attributed to different causes. Among them,35

a potential link with the stratospheric ozone depletion was pointed out (Solomon, 1999),36

but this hypothesis has not been confirmed in recent work (e.g., Sigmond and Fyfe, 2010;37

Smith et al., 2012; Bitz and Polvani , 2012). Besides, Mahlstein et al. (2013); Simpkins et al.38

(2013); Zunz et al. (2013); Polvani and Smith (2013) drew attention to the fact that the in-39

ternal variability of the climate system could also explain the positive trend in sea ice extent40

observed over the last decades. Other studies underlined the potential role of wind changes41

and of an enhanced stratification of the ocean (e.g., Bitz et al., 2006; Zhang , 2007; Lefebvre42

and Goosse, 2008; Stammerjohn et al., 2008; Goosse et al., 2009; Kirkman and Bitz , 2010;43

Landrum et al., 2012; Holland and Kwok , 2012; Bintanja et al., 2013; Goosse and Zunz ,44

2014).45

Nevertheless, no clear consensus on the processes responsible for this increase in sea46

ice extent has been reached yet. Understanding the evolution of the sea ice in the Southern47

Ocean is particularly difficult due to the lack of observations in this area, on the one hand, and48

the biases of climate models in the Southern Ocean, on the other hand. In particular, general49

circulation models involved in the 5th Coupled Model Intercomparison Project (CMIP5,50
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Taylor et al. (2011)) generally overestimate the internal variability of the sea ice extent in51

the Southern Ocean and/or have a mean state that does not agree with the observations52

over the last 30 years, i.e. the time period for which reliable observations of the sea ice are53

available (e.g., Turner et al., 2013; Zunz et al., 2013).54

A key issue is to determine whether the positive trend in sea ice extent would have been55

predictable if adequate observations and models were available some decades ago. In the56

same line, potential predictability in the Southern Ocean was pointed out (Pohlmann et al.,57

2009) but the subject has been poorly studied so far (Zunz et al., 2013; Holland et al.,58

2013). In an idealised test case, Holland et al. (2013) described predictive capability for the59

position of the ice edge for several months if the system is initialised with nearly perfect60

observations. In a more realistic set up, Zunz et al. (2013) found that the skill of CMIP561

retrospective forecast simulations is generally weak for the Antarctic sea ice at interannual62

to multi-decadal timescales. The initialisation procedures used in the CMIP5 prediction63

simulations analysed by Zunz et al. (2013) are generally based on simple data assimilation64

methods, such as nudging, potentially reducing the skill of the predictions. Therefore, in65

parallel with an adjustment of the physical parameterisations included in the models that66

could reduce the biases in the Southern Ocean, more sophisticated initialisation methods67

deserve to be tested to check whether they improve the quality of the predictions of the sea68

ice in the Southern Ocean at interannual to multi-decadal timescales.69

In the present study, we systematically examine how the predictability of Antarctic sea70

ice depends on the data assimilation method that is used to initialise the model simulation.71

In the recent study of Pohlmann et al. (2013), an analysis of the retrospective prediction72

skill of the Atlantic meridional overturning circulation was performed for different prediction73

systems using both different models and different initialisation procedures. In contrast to74

Pohlmann et al. (2013), we use only one climate model to analyse the Antarctic sea ice. This75

allows isolating more clearly the differences in the predictive skill that can be achieved due76

to the various initialisation procedures. Furthermore, unlike Pohlmann et al. (2013), the77

analyses proposed here were performed in an idealised framework. This approach consists78

of using pseudo-observations instead of actual observations for both the initialisation and79
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the verification of the hindcats and has been used in many recent studies (e.g., Holland80

et al., 2013; Tietsche et al., 2013; Servonnat et al., 2014). The pseudo-observations are81

obtained from a reference simulation performed with the same model as the one used in82

the hindcast and a noise is added to the pseudo-observations when they are included in the83

initialisation procedure. However, when comparing the results of initialisation methods with84

the pseudo-observations no noise is added providing the comparison with the truth. The use85

of pseudo-observations ensures that they have the same variability and mean state as the86

model results, since the incompatibilty in the mean state and variability between a model87

and observations may obscure the role of the initialisation method. Furthermore, working88

in an idealised framework allows testing the initialisation methods over longer time periods89

than if actual observations were used given that for the Antarctic sea ice reliable observations90

are available from the 1970s onwards only. Nevertheless, we have to keep in mind that the91

results discussed in this idealised framework correspond to an upper limit of predictability.92

For realistic prediction experiments, in which actual observations are simulated, model biases93

will tend to decrease the predictability.94

The model used here is the Earth system model of intermediate complexity LOVE-95

CLIM1.2. It has a coarser resolution and a lower level of complexity than present-day96

general circulation models (GCMs), resulting in lower computational cost. Nevertheless, in97

the Southern Ocean it has a performance comparable to that of GCMs (Goosse and Zunz ,98

2014). It is thus an adequate tool to perform the large number of experiments required in99

our study. The skill of a prediction system is assessed here for the Antarctic sea ice through100

the analysis of hindcast simulations, i.e. simulations performed in the same conditions as if101

they were forecasts but spanning a past time period.102

The climate model LOVECLIM1.2 is briefly described in Sect. 2.1 and the initialisation103

methods tested here are described in Sect. 2.2. Sect. 2.3 presents the scores that are used104

to assess the uncertainty and the accuracy of the hindcasts. The discussion of the results is105

divided into two parts: the interannual to decadal (Sect. 3.1) and the multi-decadal (Sect.106

3.2) predictions. Finally, the main results are summarised and conclusions are proposed in107

Sect. 4.108
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2 Methodology109

2.1 Model description110

The three-dimensional model LOVECLIM1.2 (Goosse et al., 2010) consists of the atmo-111

spheric component ECBilt2 (Opsteegh et al., 1998), the oceanic component CLIO3 (Goosse112

and Fichefet , 1999) and the vegetation model VECODE (Brovkin et al., 2002). The at-113

mospheric model is a three-level quasi-geostrophic model with T21 horizontal resolution114

(corresponding to about 5.6̊ ×5.6̊ ). The stratosphere dynamics is not represented in ECBilt115

and the highest atmospheric level is at 200 hPa, preventing us to adequately take into ac-116

count the influence of stratospheric ozone depletion. The oceanic model is an ocean general117

circulation model coupled to a sea ice model with horizontal resolution of 3̊ ×3̊ and 20 un-118

evenly spaced vertical levels in the ocean. The vegetation component has the same horizontal119

resolution as ECBilt2 and simulates the evolution of the vegetation cover in terms of trees,120

grass and deserts. All the simulations performed with LOVECLIM1.2 over the 20th century121

are driven by anthropogenic and natural forcings (greenhouse gases increase, variations in122

volcanic activity, solar irradiance, orbital parameters and land use), corresponding to the123

ones adopted in the historical simulations performed in the framework of CMIP5 (Taylor124

et al., 2011).125

The model LOVECLIM1.2 simulates a realistic seasonal cycle of the sea ice extent in the126

Southern Hemisphere (Goosse and Zunz , 2014). It tends, however, to overestimate the sea ice127

extent during most of the year (not shown). The amplitude of those systematic biases in the128

sea ice simulated by LOVECLIM1.2 is comparable to the one of general circulation models129

involved in CMIP5 (e.g., Turner et al., 2013; Zunz et al., 2013). The too large sea ice extent130

simulated by LOVECLIM1.2 is the result of an overestimation of the sea ice concentration in131

the majority of the sectors of the Southern Ocean (Fig. 1). In summer (JFM), the averaged132

sea ice extent simulated by LOVECLIM1.2 between 1979 and 2009 reaches 6.1×106 km2
133

while it equals 4.2×106 km2 in the observations (Fetterer et al., 2002, updated daily). In134

winter (JAS) over the period 1979-2009 the averaged sea ice extent reaches 19.8×106 km2 (135

17.8×106 km2) in LOVECLIM1.2 (in the observations).136
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2.2 Initialisation of the hindcasts137

Eight initialisation methods are tested in this study. The methods are presented in this138

section and are summarised in Table 1. For each initialisation method, a hindcast is initialised139

on January 1 every 5 years between 1900 and 1990. One hindcast consists of an ensemble140

of 96 members and spans a period of 30 years. While the initialisation date slightly impacts141

the predictability of the Arctic sea ice (e.g., Blanchard-Wrigglesworth et al., 2011; Day et al.,142

2014), the influence of the initialisation date on the predictability of the Southern Ocean sea143

ice has not been firmly assessed yet (Holland et al., 2013). However, this issue is out of the144

scope of the present study and is not addressed here.145

In a first step, two extreme initialisation procedures are tested in the hindcast simulations.146

The first one does not take into account any pseudo-observations constraints. The corre-147

sponding non-initialised hindcasts, hereinafter referred to as HIND noinit, do not require a148

specific procedure. They are simply taken from successive 30-yr time periods, separated by149

5 years between 1900 and 1990, of a 96-member simulation driven by external forcing. Every150

three months, a perturbation is added to the surface air temperature of each member in order151

to be consistent with the experimental design of the simulations with data assimilation (see152

below). The hindcasts HIND noinit are used to assess the part of the predictability that153

cannot be attributed to the initialisation with pseudo-observations. The second initialisation154

method is a nearly perfect initialisation. All the model variables of a perfectly initialised155

hindcast are initialised with values that are directly extracted from the pseudo-observations.156

A small perturbation is added to the surface air temperature of this initial state in order to157

generate different members of an ensemble. The perfectly initialised hindcasts, hereinafter158

referred to as HIND perfect, allow assessing an upper limit of predictability.159

In a second step, the hindcasts are initialised through different data assimilation (DA)160

methods. DA combines the model equations and available observations in order to estimate161

the state of the system as accurately as possible (Talagrand , 1997). In principle, a DA pro-162

cedure allows updating the model solution not only for the variable that is assimilated but163

also for the other ones. Once a DA simulation has been run, the values of the state variables164

corresponding to different times at which we want to initialise a hindcast are extracted from165
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the results of this simulation and are used as initial conditions. After the initialisation, no166

further information is provided by the pseudo-observations. A brief description of the DA167

methods used in the present study is given below and more detailed information is available168

in Dubinkina and Goosse (2013). These data assimilation methods demonstrated good per-169

formance in the Southern Ocean area in an idealised framework with pseudo-observations170

(Dubinkina and Goosse, 2013).171

Here, pseudo-observations of monthly mean surface air temperature are assimilated. For172

initialisation of decadal prediction simulations assimilating subsurface oceanic data compared173

to assimilating only surface data can improve the performance of the forecast (e.g., Dunstone174

and Smith, 2010). However, in the Southern Ocean actual subsurface observations are even175

sparser in space and time than surface observations. Therefore, in order to test initialisation176

methods that could be easily transposed from this idealised study to a more realistic one,177

we assimilate only the surface air temperature data. Given the links between the surface178

air temperature and other climate variables, for instance the sea ice concentration, the179

reconstruction of the latter variables could be potentially improved by assimilating only the180

surface air temperature. The pseudo-observations correspond to the solution between the181

years 1850 and 2000 provided by a transient simulation driven by external forcing. This182

transient simulation starts in 850 from an equilibrium simulation. Four additional transient183

simulations spanning the period 850-1850, starting with perturbed initial conditions, were184

performed to provide the initial states for the simulations with data assimilation (for details185

see Dubinkina and Goosse, 2013). In order to mimic the instrumental errors, a Gaussian186

noise with standard deviation of 0.5̊ C is added to these pseudo-observations before they are187

assimilated in the model. Since we are working in an idealised framework in which the model188

and the pseudo-observations have the same climatology, there is no difference in assimilating189

anomalies or full-field variables (e.g., Pierce et al., 2004; Murphy et al., 2010; Pohlmann190

et al., 2009; Smith et al., 2013) and we choose to assimilate anomalies.191

In addition, for each DA method used to generate the initial states of the hindcasts, two192

simulations were performed. In one simulation, dense pseudo-observations of the surface193

air temperature were assimilated, i.e. the pseudo-observations were available at every grid194
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cell of the model. In the second simulation, sparse pseudo-observations were assimilated,195

i.e. the pseudo-observations were available only at the grid cells where observations from196

the HadCRUT3 dataset (Brohan et al., 2006) are available between 1850-2000, the spatial197

coverage being displayed in Fig. 5 in Dubinkina and Goosse (2013). This allows assessing198

how the predictability decreases in a more realistic framework, compared to the idealised199

situation where pseudo-observations cover the whole model grid.200

201

Nudging202

Nudging is a DA method commonly used in decadal climate prediction studies (e.g.,203

Keenlyside et al., 2008; Pohlmann et al., 2009; Dunstone and Smith, 2010; Smith et al.,204

2010; Kröger et al., 2012; Swingedouw et al., 2012; Matei et al., 2012a; Servonnat et al.,205

2014). It consists of adding to the prognostic model equations a term that pulls the solution206

towards the (pseudo-) observations (e.g., Kalnay , 2007). In LOVECLIM1.2, the nudging207

term corresponds to an additional heat flux between the atmosphere and the ocean Q =208

γ(Tmod − Tobs). Tmod and Tobs are the monthly mean surface air temperature simulated by209

the model and from the (pseudo-) observations respectively. γ determines the relaxation210

time and equals 120 W m−2 K−1. This value of γ stands between the values used in other211

studies (e.g., Keenlyside et al., 2008; Pohlmann et al., 2009; Smith et al., 2010; Matei et al.,212

2012a; Swingedouw et al., 2012; Servonnat et al., 2014). In addition, the nudging term is213

limited to a maximum value of 50 W m−2.214

The simulations that assimilate pseudo-observations through the nudging described above215

are 96-member ensembles. Each member of the ensemble is nudged every day towards the216

monthly mean pseudo-observations and every three months a perturbation is added to the217

surface air temperature of each member in order to work in the same experimental design218

for all three DA methods used here (see below). In both simulations assimilating dense and219

sparse pseudo-observations, the nudging is applied globally over the ocean where data are220

available, except the area covered by sea ice. Applying the nudging of surface temperature221

only on the grid cells free of sea ice is a common practice (e.g., Keenlyside et al., 2008;222

Pohlmann et al., 2009; Matei et al., 2012a; Servonnat et al., 2014). Excluding ice covered223
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area from the nudging procedure prevents spurious forcing that would be introduced by the224

additional heat flux in the case when sea ice is present in the pseudo-observations but not in225

a simulation to be nudged. The hindcasts initialised with dense (sparse) pseudo-observations226

through the nudging are referred to as HIND NUDdense (HIND NUDsparse) and summarised227

in Table 1.228

229

Particle filter with sequential importance resampling230

The particle filter with sequential importance resampling (SIR) is an ensemble DA231

method (e.g., van Leeuwen, 2009; Dubinkina et al., 2011) and consists of the following steps.232

Starting from a set of different initial conditions, an ensemble of 96 simulations is prop-233

agated forward in time with the model for a period of three months. A realisation of the234

model (called particle) is different from another only due to different initial conditions. After235

the propagation step, a weight is assigned to each particle. This weight is computed based236

on the agreement between the surface air temperature estimated by the particle and the237

pseudo-observations (the better the agreement, the larger the weight). Then, particles are238

resampled: particles with small weights are eliminated while the ones with large weights are239

kept and duplicated in proportion to their weights, maintaining the total number of particles240

constant. A small perturbation is added to the duplicated particles in order to obtain ini-241

tial conditions different from each other. The particles are then again propagated for three242

months using the model, and the whole procedure is repeated until the end of the period of243

interest.244

Two sets of experiments were performed with SIR: one with dense pseudo-observations245

assimilated over the area covering the polar cap southward of 30̊ S and one with sparse246

pseudo-observations assimilated southward of 60̊ S. The choice of a smaller assimilation do-247

main when sparse data were used has been made to avoid filter degeneracy (e.g., van Leeuwen,248

2009, 2010; Dubinkina and Goosse, 2013). The hindcasts initialised with dense (sparse)249

pseudo-observations through the SIR are referred to as HIND SIRdense (HIND SIRsparse).250

251

Nudging proposal particle filter252
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The nudging proposal particle filter (NPPF) is a combination of the nudging and the par-253

ticle filter with sequential importance resampling described above. During the propagation254

of the 96 particles using the model, a nudging term pulls the surface air temperature of the255

model towards the pseudo-observations. Then, the amplitude of the diagnosed nudging term256

is taken into account in the computation of the weight of each particle, as explained in Du-257

binkina and Goosse (2013). As for the particle filter with sequential importance resampling,258

two sets of experiments were performed with NPPF: one with dense pseudo-observations259

assimilated over the area covering the polar cap southward of 30̊ S and one with sparse260

pseudo-observations assimilated southward of 60̊ S. The nudging, in turn, is applied every-261

where over the ocean, except the area covered by sea ice. Hereafter, the hindcasts whose262

initial conditions are extracted from a simulation that assimilated dense (sparse) pseudo-263

observations through the NPPF are referred to as HIND NPPFdense (HIND NPPFsparse).264

265

2.3 Assessment of the skill of the prediction system266

On the one hand, the skill of the hindcasts is assessed through the spread of the solutions267

provided by the members belonging to the same ensemble. This spread is used here to268

quantify the uncertainty of the ensemble, but care must be taken while interpreting the269

spread as it does not systematically represent well the range of possibilities in a prediction270

(Goddard et al., 2012). On the other hand, the ability of the ensemble mean to reproduce271

different characteristics of the sea ice present in the pseudo-observations provides a measure272

for the accuracy of the prediction. Both will thus be presented here.273

In order to assess for how long the predictability of an initialised hindcast exceeds the one274

of a non-initialised experiment, the spread of the hindcast ensemble is generally compared275

to the spread computed from a reference simulation, the approach varying slightly from one276

study to another (e.g., Pohlmann et al., 2004; Phelps et al., 2004; Koenigk and Mikolajewicz ,277

2009;Msadek et al., 2010; Döscher et al., 2010; Blanchard-Wrigglesworth et al., 2011; Holland278

et al., 2013). We choose to use the prognostic potential predictability (PPP) introduced by279

Pohlmann et al. (2004) and applied in several recent studies (e.g., Koenigk and Mikolajewicz ,280
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2009; Msadek et al., 2010; Holland et al., 2013). It consists of the ratio between the ensemble281

spread of the hindcasts and the variance of a control simulation. For a given variable x at282

lead time t,283

PPP(t) = 1−
1
N

∑N

i=1
1

M−1

∑M

j=1 [xij(t)−Xi(t)]
2

σ2
clim

, (1)

where i is the ensemble index (N ensembles initialised at different times), j is the member284

index within one ensemble (M members per ensemble), xij is the simulated variable x in285

the hindcast member j of the ensemble i, Xi is the ensemble mean of the ensemble i and286

σ2
clim is the variance of a 1000-yr control simulation with constant pre-industrial greenhouse287

gas levels taken from the year 1850. If the simulated variable corresponds to monthly or288

seasonal mean, as it is the case in Sect. 3.1, the variance σ2
clim is computed individually for289

each month or season of the year.290

A value of the PPP close to 1 means that the ensemble spread is much smaller than the291

natural variability, indicating the existence of predictability arising from the knowledge of292

the initial state. On the contrary, when the PPP is close to 0 or negative, the ensemble293

spread equals or outstrips the natural variability, meaning that the potential predictability294

is lost. The significance of the PPP is assessed based on an F-test that takes into account295

the autocorrelation, as in Pohlmann et al. (2004).296

We have to keep in mind that a high value of the PPP does not ensure that the ensemble297

mean constitutes an accurate prediction: an ensemble can display a small spread while298

disagreeing with the observed state. In the present study, we go a step further and compute299

the anomaly correlation coefficient (ACC) or the ordinary Pearson correlation, depending300

on the timescales considered, that tell us how well the hindcasts reproduce the year-to-year301

evolution of the pseudo-observations (Sect. 3.1) or the pseudo-observed trends spanning302

several decades (Sect. 3.2). For the ACC, we follow the formulation of Pohlmann et al.303

(2009):304

ACC(t) =

∑N

i=1

[

Xi(t)− X̄
]

[oi(t)− ō]
√

∑N

i=1

[

Xi(t)− X̄
]2∑N

i=1 [oi(t)− ō]2
, (2)
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where t is the lead time (in years), Xi is the ensemble mean of the ith hindcast for the305

simulated variable x, i is the ensemble index (different indices correspond to different times306

when the hindcast simulations are started). N is the number of ensembles. oi is the pseudo-307

observation covering the time period spanned by the ensemble i. The overbar stands for308

the climatological mean computed from a reference simulation (X̄) and of the pseudo-309

observations (ō) over the analysed period 1900-2000. The significance of the correlation310

is assessed thanks to a two-sided t-test.311

To sum up, the predictive skill achieved thanks to different initialisation procedures at312

interannual to multi-decadal timescales is estimated here through the computation of the313

PPP and the correlation for different variables related to the sea ice and to the temperature314

in the Southern Ocean. These two skill measures complement each other since the PPP315

tells us about the scatter accross the solutions of a hindcast ensemble, while the correlation316

estimates the agreement between the pseudo-observations and the ensemble mean of the317

hindcast.318

These skill scores are computed for the ice edge location—the latitude where the ice319

concentration in the Southern Ocean reaches 15%—, the sea ice extent (SIE)—the sum of320

the areas of all the model grid cells where the sea ice concentration is at least 15%—, and321

the ocean heat content in the upper 100m of the ocean. Analysing the predictive skill for322

the ice edge location provides an overview of the regional distribution of the predictability323

of the sea ice and allows an easy comparison with the results of Holland et al. (2013). The324

sea ice extent is a widely used metric in sea ice studies (e.g., Turner et al., 2013; Polvani and325

Smith, 2013; Germe et al., 2014) which provides an integrated view over the whole Southern326

Ocean. An alternative could be an analysis of the sea ice area which is often considered as327

a more natural measure of the total sea ice coverage. While the conclusions are generally328

most sensitive to the choice of ice extent or area when the results are compared to real329

observations (e.g., Notz , 2014), the choice of the metric for the sea ice cover should not330

have a large impact on our results since the analyses are here performed in a perfect model331

framework. Unless specified, the ocean heat content is computed over the area southward of332

60̊ S, between 0 and 100m below the surface. This depth is close to the depth of convection333
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reached in winter in LOVECLIM1.2 in most parts of the Southern Ocean, except in the area334

where deep convection occurs.335

3 Results336

3.1 Interannual to decadal predictability337

In this section, we discuss the predictability of the Antarctic sea ice, from 1 month to 10338

years ahead. The predictability of the ice edge location is computed for monthly means in339

order to compare our results to the recent study of Holland et al. (2013). Besides, we have340

chosen to discuss the interannual evolution of summer (average over January, February and341

March) and winter (average over July, August and September) sea ice extents separately342

rather than a month to month evolution in order to specifically investigate the difference in343

predicatbility between the seasons.344

First, we analyse the PPP and the ACC for the hindcasts HIND perfect (Sect. 3.1.1). In345

these hindcasts, all the model variables are initialised with values provided by the pseudo-346

observations (see Table 1). Second, the predictability provided through distinct initialisation347

methods is discussed for the sea ice extent (Sect. 3.1.2).348

3.1.1 Predictability of the ice edge location349

In the hindcasts HIND perfect, the PPP of the ice edge location displays values between 0.7350

and 1 during the first two months of integration everywhere around Antarctica (Fig. 2a). It351

then decreases everywhere in the Southern Ocean. Nevertheless, in the eastern Weddell Sea352

and in the western Indian Ocean (between 15̊ E and 55̊ E), in the Ross Sea (between 180̊ E353

210̊ E) and in the Bellingshausen and Amundsen Seas (between 230̊ E and 290̊ E) potential354

predictability reemerges after a few months, in May or June of the first year, and persists355

until September or October. After 2 years the PPP becomes very low in all the sectors. Those356

results are in good agreement with the ones discussed in Holland et al. (2013), confirming357

the relevance of our study based on the model LOVECLIM1.2. Holland et al. (2013) have358

also highlighted an eastward propagation of the predictability related to the eastward flow359
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of the ocean and sea ice. Such a propagation may play a role in our experiments in the360

Bellingshausen and Amundsen Seas, while the reemergence of the anomaly is the dominant361

feature in the other sectors.362

The regions with high PPP are also characterised by high ACC of the ice edge location in363

the hindcasts HIND perfect. It reaches values of at least 0.6 during the first three months of364

integration at all longitudes (Fig. 2b). In the eastern Weddell Sea and in the western Indian365

Ocean (between 0̊ E and 40̊ E) and in the Bellingshausen and Amundsen Seas (between 230̊ E366

and 300̊ E) the ACC remains higher than 0.6 until the end of the first year. This means that367

in these areas accurate prediction of the ice edge location potentially can be performed a368

year ahead. This is associated with high predictability of the sea ice concentration near the369

ice edge in those regions (not shown). In the western Pacific Ocean sector (between 90̊ E370

and 160̊ E) the ACC is close to 0 from April of the first year but higher values of the ACC371

reemerge between May and July of the first year. In December of the first year the ACC is372

lower than 0.4 at all longitudes. Nevertheless, in May of the second year the ACC reaches373

again values higher than 0.6 in the eastern Weddell Sea and in the western Indian Ocean374

(between 15̊ E and 70̊ E) as well as in the Bellingshausen and Amundsen Seas (between375

250̊ E and 300̊ E).376

The reemergence of predictability in winter is thus a dominant characteristic of the377

predictability of Antarctic sea ice. It cannot be accounted for by the memory of the sea ice378

itself. Indeed, the persistence of the Antarctic sea ice is very weak since it disappears almost379

entirely during the melting season. The memory is more likely provided by heat anomalies380

stored in the ocean, as proposed for instance by Holland et al. (2013). In LOVECLIM1.2 the381

high ACC of the ocean heat content (southward of 60̊ S, in the first 100m below the surface)382

during the first two years of integration agrees well with this hypothesis (Fig. 3a). Note383

that the correlation between the ice edge location and the ocean heat content is particularly384

strong (in absolute value) between 0̊ E and 50̊ E and between 150̊ E and 300̊ E, especially385

during winter months, where the ACC of the ice edge is also high.386

Given that the mixed layer is shallower in summer than in winter, the ocean surface is387

isolated from deeper levels during this season. In winter, thanks to the cooling and brine388
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rejection during the formation of sea ice, the mixed layer is deeper and the interactions389

between the surface and the interior ocean are stronger. This leads to an enhanced heat390

flux from the ocean to the surface that plays a dominant role in the formation of sea ice,391

contributing to the significant negative correlation between the ice edge location and the392

ocean heat content below the sea ice (Fig. 3b). The changes in sea ice concentration also393

impact the ocean heat content, the two variables being linked by various feedback processes394

(e.g., Martinson et al., 1981; Goosse and Zunz , 2014). Because of the multiple interactions it395

was not possible in the present framework to determine precisely to which extent the ocean396

drives the sea ice changes or if conversely, sea ice changes drive the ones in the ocean (not397

shown). Nevertheless, given the low persistence of the sea ice in the Southern Ocean, the398

results of Fig. 3 reasonably support the hypothesis that the high values reached by the ACC399

of the ice edge location during winter can be accounted for by the high ACC of the ocean400

heat content, achieved thanks to the strong thermal inertia of the ocean.401

3.1.2 Predictability of the sea ice extent402

The discussion of the predictive skill for the ice edge location presented above is focused on403

hindcast simulations initialised with perfect initial conditions. For this variable the values404

reached by the PPP and the ACC decrease rapidly after the initialisation and barely reach405

significant values, except in winter, after the first year of simulation. The skills of the406

simulations initialised with other methods display similar patterns but were even lower and407

were thus not presented for brevity. The PPP and the ACC may be better for a global408

variable such as the sea ice extent. Indeed, local errors of different signs in different sectors,409

which have a large effect on the PPP and the ACC of the ice edge location, may balance410

each other and lead to a better skill for the sea ice extent, in particular for the hindcasts that411

are not initialised with perfect initial conditions. It is thus instructive to analyse the PPP412

and the ACC of the sea ice extent for all the different initialisation methods tested here.413

The PPP of summer SIE starts from a maximum in the first year of integration, gets close414

to the significance level or even falls below it in the second or in the third year of integration,415

except for the hindcasts HIND NUDsparse whose PPP never reaches statistically significant416
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values. After three years of integration the PPP barely reaches significant values for any417

initialisation method (Fig. 4a). In the first year, whether the dataset used to initialise418

the hindcasts is dense or sparse strongly impacts the PPP, especially when the nudging419

proposal particle filter or the particle filter with sequential importance resampling are used420

to assimilate the data (blue and orange lines in Fig. 4a). Indeed, in the first year the421

values of the PPP of the hindcasts HIND NPPFdense and HIND SIRdense reach 0.70 and 0.65422

respectively, while the PPP is much lower in the first year for the hindcasts HIND NPPFsparse423

and HIND SIRsparse (0.17 and 0.24 respectively). To a lesser extent, the hindcasts initialised424

through the nudging also provide a smaller PPP when sparse pseudo-observations are used425

but the PPP is always low when this DA method is used.426

The low value of the PPP for the hindcasts HIND NUDdense and HIND NUDsparse indi-427

cates a large spread of the ensemble, already present at the initialisation of the hindcasts.428

In the simulation assimilating pseudo-observations through a nudging, the nudging term ap-429

plied on each member of the ensemble tends to maintain the members close to each other.430

However, as explained in Sect. 2.2, the nudging is not applied over the sea ice covered area,431

obviously reducing the constraint from the pseudo-observations on the sea ice extent. On432

the contrary, sea ice covered area is included in the assimilation domain of the particle fil-433

ters in SIR and NPPF, providing a stronger constraint from the pseudo-observations on the434

sea ice extent. Note that, in the nudged simulations the members of the ensemble are also435

perturbed every three months in order to maintain the consistency with the experimental436

setup of the other simuations.437

The fact that the PPP of the hindcasts initialised with sparse data is systematically lower438

than the one of the hindcasts initialised through the same method but with dense data can439

be accounted for by the weaker constraint applied on the initial state when sparse pseudo-440

observations are used. This results in a larger spread of the ensemble and, thus, in a lower441

PPP. The weaker constraint is first accounted for by the fewer amount of data available442

in the sparse pseudo-observations. In addition, when the particle filters (SIR or NPPF)443

are used, the domain over which the particle filters assimilate the data is smaller when444

sparse pseudo-observations are assimilated, also reducing the constraint on the ensemble.445
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As mentioned in Sect. 2.2, the reduction of the assimilation domain for the particle filters446

was required in order to avoid filter degeneracy in the simulation with assimilation. Fig. 4a447

and b illustrate that changing the dataset from dense pseudo-observations to sparse pseudo-448

observations decreases the constraint on the initial state much more than changing the DA449

method from the NPPF to the SIR. Consequently, particular attention has to be paid when450

interpreting the PPP because changes in the ensemble spread may be strongly related to the451

experimental design, such as the choice of the domain where the data are assimilated, and452

not on the predictability of the system itself.453

The PPP of winter sea ice extent displays a slower decrease than the PPP for sum-454

mer sea ice extent and stays above the significance level until the 7th year when ini-455

tialised with perfect initial conditions (Fig. 4b). In the hindcasts HIND NPPFdense and456

HIND SIRdense the PPP remains significant during the first four years and in the hind-457

casts HIND NPPFsparse and HIND SIRsparse during the first three years. The hindcasts458

HIND NUDdense and HIND NUDsparse provide a PPP that is always below the 95% signifi-459

cance level. Overall, these results indicate that the winter sea ice extent is more predictable460

than the summer sea ice extent. The square of the autocorrelation (r2) is used here to461

assess the predictability that is gained from the persistence. Fig. 4a and b indicate that462

the persistence of the winter sea ice extent is slightly higher than the one of summer sea463

ice extent during the first three years of integration but this persistence is too small to be464

responsible for the higher predictability obtained for winter sea ice extent. The higher PPP465

of the winter sea ice extent, compared to the summer sea ice extent, likely arises because of466

a stronger interaction between the sea ice and the interior ocean during winter, as discussed467

in the case of the reemergence of the predictability of the ice edge location in winter in Sect.468

3.1.1.469

Having assessed the PPP of the hindcasts of the Antarctic sea ice extent, we now focus470

on their accuracy through the computation of the ACC. The ACC for both summer and471

winter is always positive, even for the hindcasts HIND noinit. This is due to the fact that472

all the hindcasts as well as the pseudo-observations are driven by the same external forcing473

that ensures at least a weak correlation between the hindcasts and the pseudo-observations.474
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In summer its value is, however, rarely above the significance level except in the first year475

for the hindcasts HIND perfect and HIND NPPFsparse. Furthermore, the choice of the DA476

method and the use of dense or sparse pseudo-observations to initialise the hindcasts do not477

lead to a major difference in the ACC. In general, the ACC of sea ice extent in winter is larger478

than in summer (Fig. 4d), which is in agreement with the ACC of the ice edge location. For479

most of the initialisation methods, the ACC remains statistically significant during at least480

the first three years of integration. Moreover, during the first three years of integration the481

ACC of all hindcasts initialised with pseudo-observations, except HIND SIRsparse, outstrips482

the ACC of the hindcasts that were not initialised with pseudo-observations, though the483

improvement is weak and none of the tested intialisation methods systematically provides a484

higher ACC than the others.485

The relative performance of each simulation with data assimilation is discussed in de-486

tail in Dubinkina and Goosse (2013). They demonstrated good performance of the recon-487

struction of atmosphere as well as ocean variables provided by the particle filters (SIR and488

NPPF). For the reconstructed sea ice concentration, a clear improvement is obtained with489

the NPPF compared to the SIR. Dubinkina and Goosse (2013) showed that the assimilation490

of pseudo-observations through the nudging provides satisfying reconstructions of surface air491

temperature and sea ice concentration in the Southern Hemisphere. However, because of492

the spurious impact of the nudging on the mixed layer dynamics in the model, the ocean493

temperature at depth and the surface salinity are not well simulated.494

Despite those differences in the initial state, all the initialisation procedures tested here495

lead to relatively similar ACC. Firstly, this is due to the low ACC brought by the ini-496

tialisation. The ACC of HIND perfect, corresponding to the best possible initialisation, is497

generally not much higher than the one obtained in all the other simulations, except for498

the first year. Secondly, additional analyses performed on the initial states provided by the499

various assimilation methods have shown that they all have their own biases, either on the500

oceanic heat content or on the salt content. This potentially affects vertical heat fluxes and501

thus the oceanic heat flux at surface during the hindcast, reducing the prediction skill. The502

larger errors are found in HIND NUDdense and HIND NUDsparse for which the salt content503
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in the first 100m in the initial state of the hindcast is negatively correlated with the one of504

the pseudo-observations, which is in agreement with Dubinkina and Goosse (2013).505

3.2 Multi-decadal predictability506

In this section, we discuss the predictability of the trends in the ice edge location and ice507

extent computed over time periods from 10 to 30 years. All the time periods over which the508

trends are computed start on the first year of the hindcasts, i.e. directly after the initialiation.509

Due to the large internal variability of the Antarctic sea ice, the trends in sea ice extent can510

substantially vary between the members of an ensemble performed with the same climate511

model (e.g., Landrum et al., 2012; Zunz et al., 2013). As a consequence, predictions may512

be very uncertain. However, an efficient intialisation of the hindcasts imposes a constraint513

on the initial state that could decrease the spread of the trend over the years following514

the initialisation. A comparison between the ensemble spread of the trends in hindcast515

simulations and a reference variance of the trends is thus required. As for the case of516

decadal predictions (Sect. 3.1), we use the prognostic potential predictability (Eq. (1)) as a517

measure of the uncertainty of the simulated trends in sea ice. Here, the variable x in Eq. 1518

stands for the trend in ice edge location (sea ice extent) for each ensemble member and the519

time t in Eq. (1) represents the length of the time period over which the trend is computed.520

The climatological variance (σ2
clim in Eq. (1)) is the variance of the trends computed over521

successive time periods, spaced by 5 years, of a 1000-yr control run simulation with constant522

pre-industrial greenhouse gas levels.523

In order to assess the accuracy of the hindcasts, we focus on the ensemble mean of the524

trends in ice edge location (sea ice extent). We compute the ordinary Pearson correlation525

between the trends provided by the ensemble means of each hindcast and the corresponding526

trends computed from the pseudo-observations. On multi-decadal timescales, the external527

forcing has potentially a large impact on the trend in ice edge location (sea ice extent) and we528

have to disentangle this contribution from the one that can be attributed to the initialisation.529

For that purpose we take as a reference the correlation between the pseudo-observations and530

the hindcasts HIND noinit. This hence represents the amplitude of the correlation of the531
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trends that is provided by the external forcing.532

For each initialisation method, the number of hindcasts used to compute the PPP and533

the correlation of the 10- to 30-yr trends is smaller than the number of hindcasts used in534

Sect. 3.1 (15 instead of 19). Indeed, the hindcasts initialised after 1970 are not considered in535

this section since the simulation providing the pseudo-observations ends in December 1999.536

3.2.1 Predictability of the 10- to 30-yr trend in ice edge location537

For the hindcasts HIND perfect the PPP of the trend in ice edge location generally decreases538

as the lead time gets longer (Fig. 5). In summer the PPP is significant in the Ross Sea and in539

the Bellingshausen Sea (between 200̊ E and 300̊ E). It also reaches values higher than 0.5 in540

the eastern Weddell Sea and in the western Indian Ocean (between 0̊ E and 40̊ E) as well as541

in the western Pacific sector (between 110̊ E and 130̊ E, Fig. 5a). However, those relatively542

high values of the PPP appear in areas that are generally sea ice free during summer, i.e.543

where the interannual trend in the ice edge location is close to 0 and does not vary much544

from one simulation to another. The PPP is thus not meaningful in those conditions.545

In winter the PPP of the trend in ice edge location barely exceeds 0.5 (Fig. 5b). For546

length of time periods up to 20 years, the largest values of the PPP (of at least 0.3) are547

found in the Indian Ocean (between 40̊ E and 90̊ E), in the western Pacific sector (between548

90̊ E and 140̊ E) and in the Bellingshausen Sea (between 230̊ E and 280̊ E). In the eastern549

western Pacific sector (around 100̊ E) a PPP larger than 0.3 is found for any length of time550

periods. Overall, even when the hindcasts are perfectly initialised the trends in ice edge551

display a large spread, implying a rather uncertain prediction.552

The correlation between the trends in ice edge location from the hindcasts HIND perfect553

and the the corresponding trends from the pseudo-observations depends also on the longi-554

tude and on the length of the period over which the trend is computed (Fig. 6). In summer555

correlation higher than 0.6 is found in the western Weddell Sea and in the eastern Indian556

Ocean (between 10̊ E and 40̊ E), in the eastern western Pacific sector (between 130̊ E and557

160̊ E), in the western and eastern Ross Sea (between 160̊ E and 220̊ E) and in the Belling-558

shausen and Amundsen Seas (between 230̊ E and 300̊ E), especially for time periods shorter559
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than 20 years (Fig. 6a). In winter the correlation of the trend in ice edge location is gener-560

ally higher than in summer, especially for time periods longer than 20 years (Fig. 6b). The561

correlation is generally higher than 0.6, except in the eastern Weddell Sea and in the western562

Indian Ocean (between 0̊ E and 50̊ E) for time period longer than 20 years, in the Ross Sea563

(between 160̊ E and 200̊ E) for time period longer than 14 years and in the Bellingshausen564

and Amundsen Seas (between 250̊ E and 300̊ E) for time periods longer than 25 years.565

The values obtained for the PPP and the correlation of the trends in ice edge location for566

the hindcasts HIND perfect confirm the relevance of these two scores to assess the skill of a567

prediction system. Indeed, the PPP and the ACC provide complementary information that568

can even appear contradictory, as for Fig. 5 and 6. On the one hand, the PPP of the ice edge569

location in the hindcasts HIND perfect indicates that the spread of the ensemble is relatively570

large compared to the one of an uninitialised ensemble, i.e. that the potential predictability571

is low. On the other hand, the correlation reaches relatively high and statistically signif-572

icant values, meaning that the trends computed from the hindcasts ensemble mean agree573

reasonably well with the corresponding trends in the pseudo-observations. This apparent574

disagreement between the low PPP and the high correlation could actually be accounted575

for by the fact that the ensemble mean of the trends is driven by the external forcing and576

the slowly varying components of the climate system such as the ocean, as discussed below.577

Besides, the trends provided by the individual members of the ensemble are widely scattered578

around the trend of the ensemble mean because these individual trends are influenced by the579

high frequency variability of the atmosphere, unpredictable at that timescale, that gives a580

range close to the one of an unitialised ensemble. Nevertheless, the overall decrease in PPP581

for increasing length of time periods over which the trend is computed does not necessarily582

imply an increase in the variance of the hindcast trends. Indeed, the climatological variance583

σ2
clim(t) of the trend decreases with t, the length of the period over which the trend is com-584

puted. Consequently, although PPP decreases with t, the variance of the hindcast, giving a585

kind of measure of the uncertainty of the prediction, may still decrease.586

High values of the correlation for summer and winter are much less widespread in the587

hindcasts HIND noinit (Fig. 6c, d). In summer (winter) 8% (4%) of the values of the correla-588

21



tion shown on Fig. 6c (Fig. 6d) are statistically significant at the 95% level. For comparison,589

39% (69%) of the correlations are statistically significant for the summer (winter) ice edge590

location of the hindcasts HIND perfect (Fig. 6a,b). Therefore, statistically significant values591

of the correlation of the trends in the hindcasts HIND noinit are rather marginal and are592

likely not meaningful as the percentages of statistically significant values are close to the593

p-value of 0.05 used to perform the statistical test.594

Overall, the correlation of the trends in ice edge location for the hindcasts HIND perfect595

and HIND noinit shows that a large part of the predictability is likely provided by the596

initialisation and not by the response to the forcing. This indicates that even if the state of597

the sea ice in a given year is not predictable beyond three years ahead (see Sect. 3.1) the598

10- to 30-yr trend in ice edge location is highly correlated between the hindcasts and the599

pseudo-observations.600

As already proposed in Sect. 3.1 for interannual variations, the high correlation of the601

trend in ice edge location found in the hindcasts HIND perfect is likely due to the thermal602

inertia of the ocean, which allows the anomalies characterising the initial state to impact the603

evolution of the system during years to decades with potential feedbacks between the oceanic604

heat content and the ice concentration. Indeed, in the hindcasts HIND perfect the trend605

in annual mean ocean heat content (southward of 60̊ S, in the first 100m below the ocean606

surface) displays a correlation between the hindcasts and the pseudo-observations larger607

than 0.6 between 0̊ E and 75̊ E as well as between 190̊ E and 310̊ E (Fig. 7a). Furthermore,608

at these longitudes the correlation between the trend in ice edge location and the trend in609

ocean heat content reaches values close to -1 in winter (Fig. 7c) with less negative values610

in summer (Fig. 7b). The same analysis performed for the ocean heat content in the upper611

300m provides results similar to the one shown here for the ocean heat content in the upper612

100m. This high correlation of the trend in ocean heat content with pseudo-observations,613

combined with a large anti-correlation of the trend in ice edge location with the trend in614

ocean heat content, likely explains the large correlation of the trend in ice edge location615

between the hindcasts and the pseudo-observations, as shown in Fig. 6. However, between616

75̊ E and 120̊ E the trend in winter ice edge location in the hindcasts is well correlated with617
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the pseudo-observations (Fig. 6b), while the trend in ocean heat content does not display618

such a high correlation with the pseudo-observations. In some sectors of the Southern Ocean,619

additional mechanisms thus play a dominant role in the predictability of the ice edge location620

(e.g., transport from adjacent areas) and complementary studies are required to evaluate621

more precisely the origin of the predictability of the trend for each region.622

3.2.2 Predictability of the 10- to 30-yr trend in sea ice extent623

In this section, the predictability of the trends in summer and winter sea ice extents computed624

over increasing length of time period from 10 to 30 years is analysed. As for the 10- to625

30-yr trend in ice edge location (Sect. 3.2.1), we have computed the prognostic potential626

predictability of the trend in sea ice extent (Fig. 8a, b) and the correlation between the627

ensemble means of the trends provided by hindcasts using different initialisation date and628

the corresponding trends in the pseudo-observations (Fig. 8c, d). These measures of the629

predictability are computed for the trends over 10- to 30-yr long time period (starting on the630

first year after the initialisation) shown on the x-axis of Fig. 8 and for different initialisation631

methods.632

As discussed in Sect. 3.1.2 for the predictive skill of the sea ice extent at interannual to633

decadal timescales, the relative merits of the different initialisation methods tested here do634

not appear very clearly in the analysis of the trends in sea ice extent. Therefore for brevity,635

the results are shown here for the hindcasts HIND perfect, HIND noinit and HIND SIRdense.636

The skill of HIND SIRdense is among the highest of all the experiments though HIND SIRdense637

is not systematically better and its results are generally close to the ones obtained using other638

methods. Nevertheless, the results provided by the initialisation through the SIR appear639

more reliable to us since the SIR relies on a method that does not introduce any additional640

term in the model equations, ensuring that the model dynamics is preserved. Indeed, in our641

experimental design the nudging, when used alone, does not respect the ocean dynamics.642

Note, however, that this problem does not seem to occur when the nudging is combined with643

a particle filter in the NPPF (Dubinkina and Goosse, 2013).644

The PPP of the trend in summer sea ice extent reaches at most 0.36. It is statistically645
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significant at the 95% level up to 27-yr long time period for the hindcasts HIND perfect646

(purple solid lines in Fig. 8a, b). The hindcasts HIND SIRdense (orange solid line in Fig.647

8a, b) is above the 95% significance level, for 10- to 13-yr long time periods. In winter648

the PPP is significant up to 20 years for the hindcasts HIND perfect and up to 19 years649

for the hindcasts HIND SIRdense. For the other methods, the PPP is rarely significant for650

the trends in both summer and winter sea ice extent (not shown). As noticed for the PPP651

of the sea ice extent at interannual timescales (Sect. 3.1.2), for a given data assimilation652

method the PPP of the trend in sea ice extent of the hindcasts initialised with dense pseudo-653

observations is systematically higher than the PPP of the hindcasts initialised with sparse654

pseudo-observations.655

For both seasons the correlation of the trend in sea ice extent between hindcasts and656

pseudo-observations is larger if pseudo-observations are taken into account at the initialisa-657

tion, for any length of time period (Fig. 8c, d). In summer only the correlation computed658

from the hindcasts HIND perfect reaches statistically significant values. The negative val-659

ues obtained in summer for the hindcasts HIND noinit (Fig. 8c) are not meaningful given660

that they are not statistically significant and they are not robust. Indeed, the same corre-661

lation computed with another set of pseudo-observations can provide slightly positive, still662

not statistically significant, values (not shown). In winter, however, both the hindcasts663

HIND perfect and HIND SIRdense provide statistically significant correlation of the trends664

in sea ice extent, while the correlation for the non-initialised hindcast is close to 0 and not665

statistically significant. This indicates again that a part of the predictability cannot be666

accounted for by the external forcing and arises from the initialisation.667

The simulated trend in sea ice extent at multi-decadal timescales is due to a combination668

of the model internal variability and of the response to the external forcing. The exter-669

nal forcing is responsible for an overall decrease in sea ice extent between 1900 and 2000.670

The interannual variability is associated with positive and negative trends at multi-decadal671

timescales that are superimposed on this longer term trend, essentially externally driven. For672

sea ice extent in the Southern ocean those internally generated variations are much larger673

at decadal timescales than the externally driven decrease.674
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In the hindcasts HIND noinit the internal variability of the sea ice extent present in the675

pseudo-observations is not captured in the ensemble mean and the trend in sea ice extent at676

multi-decadal timescales is essentially driven by the external forcing. As a consequence, the677

correlation between the pseudo-observed sea ice extent in the year preceding the initialisation678

and the trend in the hindcast sea ice extent is weakly positive (red dashed lines with circle679

markers in Fig. 9): since the model response under warming conditions is a melting of the680

sea ice in the Southern Ocean, the trend in sea ice extent tends to be more negative over681

time as mean ice extent is decreasing.682

The goal of the initialisation of the hindcast is to reproduce the internally generated683

fluctuations in the pseudo-observations. First, as the trend in see ice extent is computed684

starting from the first year of the hindcast, it depends directly on the value of this extent685

in pseudo-observations the year preceding the initialisation of the hindcasts. Furthermore,686

because of the model dynamics (Goosse and Zunz , 2014), when initialised with a state that687

has a sea ice extent larger (smaller) than the climatological mean, a simulation generally688

provides a negative (positive) trend in sea ice extent during the following years. This results689

in a negative correlation between the sea ice extent in the pseudo-observations the year690

preceding the initialisation and the trend in sea ice extent in the hindcasts, especially in691

winter (purple dashed lines with circle markers in Fig. 9). Note that in contrast to Goosse692

and Zunz (2014), the simulations analysed here are transient simulations and the state693

averaged over several decades is thus not stationnary but slightly decreases in response to694

the external forcing.695

This suggests that initialising a hindcast with a sea ice extent anomaly that fits the one696

of the pseudo-observations is a necessary condition to ensure an accurate prediction of the697

trend at multi-decadal timescales. This is, however, not sufficient since not only the state698

of the sea ice but also the state of the water column below the sea ice must be initialised699

with a state close to the pseudo-observations, given that the information provided to the700

ocean at the initialisation can impact the system over several decades, as already discussed701

at the end of Sect. 3.2.1. As expected, the trends in both summer and winter sea ice702

extents are strongly anti-correlated with the trend in ocean heat content southward of 60̊ S703
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in the first 100m below the surface (solid lines in Fig. 9), similar results being obtained704

with the ocean heat content in the upper 300m (not shown). Consequently, it is essential705

to reproduce well this trend (Fig. 10) and thus the initial oceanic heat content as both706

are well anti-correlated (purple dotted lines with triangle markers in Fig. 9). As the data707

assimilation methods tested in the present study assimilate the surface air temperature only,708

the information provided by the pseudo-observations is not always adequately propagated709

in the ocean. The correlation of the trend in ocean heat content between the hindcasts and710

the pseudo-observations is maximum for the hindcasts HIND perfect and is close to zero for711

the hindcasts HIND noinit (Fig. 10).712

To sum up, taking into account the pseudo-observations in the initialisation of the hind-713

casts straight from the pseudo-observations dataset (HIND perfect) or from a DA simulation714

does not provide particularly high values for the PPP but clearly leads to more accurate en-715

semble mean at multi-decadal timescales. In particular, the higher correlation between the716

trends in sea ice extent of the hindcast and the corresponding ones of the pseudo-observations717

indicates that the initialisation with pseudo-observations triggers a shift of the ensemble718

mean of the trends towards the one of the pseudo-observations. Consequently, the initialisa-719

tion with pseudo-observations potentially improves the correlation with pseudo-observations720

for the trends in ice edge location (sea ice extent) over several decades while the initialisation721

has only a weak impact on the predictive skill for the ice edge location (sea ice extent) at722

interannual to decadal timescales, as discussed in Sect. 3.1. This apparent disagreement may723

be accounted for by the fact that on timescales from months to several years the behaviour724

of the sea ice is strongly impacted by the quickly varying atmosphere. This high frequency725

variability tends to overwhelm the more predictable low frequency signal that could be pro-726

vided by the ocean. Besides, on multi-decadal timescales it can be reasonably assumed that727

the variations in the ice edge location (sea ice extent) are mainly driven by the slowly varying728

ocean, limiting the impact of the unpredictable atmosphere.729
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4 Summary and conclusions730

All the results discussed in the present study have been performed in a perfect model frame-731

work. Similar tests performed in a realistic framework, i.e. with the use of actual observa-732

tions for both the initialisation and the verification of the hindcasts, would lead to a lower733

predictability, due to the models biases. Overall, even under such idealised conditions, the734

predictive skill of the model for the Antarctic sea ice is quite poor compared to other variables735

(e.g., Kim et al., 2012; Matei et al., 2012b). The analyses performed here have neverthe-736

less highlighted interesting characteristics of the predictability and the forecast capability737

achieved thanks to different initialisation methods for the sea ice in the Southern Ocean at738

interannual to multidecadal timescales.739

Firstly, in agreement with the recent study of Holland et al. (2013), the impact of the740

initialisation on the short-term predictability seems to be mainly driven by oceanic processes.741

More specifically, the predictability of the sea ice at interannual timescales is low in summer742

and increases in winter. This reemergence of the predictability in winter is provided by heat743

anomalies stored in the ocean. In summer these anomalies are isolated from the surface744

due to the weak vertical mixing in the ocean during this season. Conversely, in winter the745

enhanced vertical mixing allows these anomalies to reach the surface and impact the sea ice746

formation.747

Secondly, the predictability of the Antarctic sea ice behaves very differently depending748

on the timescale considered. At interannual timescales, during the first three years of inte-749

gration, the variance of the members within an ensemble is smaller than the climatological750

variance of the model. This suggests that the uncertainty of the ensemble mean is rather751

low. However, the scatter of the members depends on the perturbation method used to gen-752

erate the ensemble and may underestimate the real uncertainty of the ensemble. Besides, at753

interannual timescales the signal that can be provided by the ocean is largely overwhelmed754

by the unpredictable variabiliy imposed by the atmosphere, resulting in a relatively weak755

correlation between the hindcasts ensemble mean and the corresponding pseudo-observations756

even during the first years of integration.757

Although the predictability of the Antarctic sea ice during a particular year is limited758
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to a few years ahead at best, there exists predictability of the trend in sea ice at multi-759

decadal timescales. Indeed, the correlation between the ensemble mean of the trends in760

hindcasts and the corresponding trend from the pseudo-observations easily reaches values761

greater than 0.5 in winter. Furthermore, the accuracy of the multidecadal trends in sea762

ice extent computed from hindcasts initialised with pseudo-observations is better compared763

to hindcasts initialised without taking into account any pseudo-observations. This indicates764

that at multi-decadal timescales the predictability is due to not only the external forcing but765

also the initialisation method as the initialisation with pseudo-observations clearly improves766

the accuracy of the prediction in our idealised framework. Besides, the spread of the trends767

within an ensemble roughly equals the variance of the model climatology, meaning that the768

uncertainty of the trends remains relatively large. In this framework, the ocean appears to769

impact the ensemble mean of the trend in sea ice while the atmosphere is responsible for the770

scatter of the members around this ensemble mean.771

Thirdly, the method and the density of the pseudo-observations used to initialise the772

hindcasts influence the predictability of the sea ice. At both interannual and multi-decadal773

timescales the spread of the members within an ensemble is smaller if the hindcasts are774

initialised with dense pseudo-observations compared to an initialisation with sparse pseudo-775

observations. This is due to the stronger constraint applied at the initialisation, preventing776

the members to spread too quickly during the integration. The initialisation method also777

impacts the accuracy of the trend in hindcast simulations. The hindcasts initialised with778

perfect initial conditions display the highest correlation for the trend in sea ice extent as779

well as for the trend in ocean heat content. Therefore, we pointed out a clear link between780

the predictability of the sea ice and the quality of the initialisation of the ocean below it.781

In our experiments, the relative skills at interannual to multi-decadal timescales of the ini-782

tialisation methods based on data assimilation depend on the season, as well as on timescale783

investigated. None of the methods tested here has thus been clearly identified as the best784

suited for multi-decadal predictions of Antarctic sea ice. However, in the experimental setup785

employed here to assimilate pseudo-observations with a nudging, Dubinkina and Goosse786

(2013) have demonstrated that the nudging leads to a behaviour incompatible with the orig-787
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inal model dynamics. Such incompatibility does not arise when the particle filters (SIR or788

NPPF) are used. If possible, the initialisation through a particle filter or a similar method789

should thus be preferred for studying the sea ice in the Southern Ocean.790

We have applied here initialisation methods based on the assimilation of the surface air791

temperature only because relatively long time series are available and similar methods have792

been used in previous studies. Unfortunately, the persistence of surface variables is very low.793

Therefore, in order to provide contraints on longer term predictions, the data assimilation794

scheme has to propagate this information at depth in the ocean, where the persistence is much795

longer. Such a propagation is not always achieved with the methods used here. Therefore, in796

parallel to the models biases reduction efforts should be concentrated on better intialisation797

of the ocean. Furthermore, we have shown that the predictability is improved by the use798

of dense pseudo-observations in the initialisation procedure. Collecting observations in the799

Southern Ocean is thus crucial not only to improve the understanding of the processes800

occurring there but also to better initialise the simulations used to forecast the evolution of801

the sea ice around Antarctica.802
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la Recherche dans l’Industrie et dans l’Agronomie (FRIA-Belgium). H. Goosse is Senior804

Research Associate with the Fonds National de la Recherche Scientifique (F.R.S. – FNRS-805

Belgium). This work is supported by the Belgian Federal Science Policy (Research Program806

on Science for a Sustainable Development). Computational resources have been provided by807

the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the808
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Hindcasts Initial states Assimilated

pseudo-

observations

Assimilation domain

HIND noinit Hindcasts initialised without taking

into account any pseudo-observation.

- -

HIND perfect The initial states are extracted directly

from the pseudo-observations, to which

a small perturbation is added in order

to generate a 96-member ensemble.

Full model

state from

the pseudo-

observations.

Whole model grid.

HIND NUDdense The initial states are extracted from

the 96 members of a simulation with

data assimilation using the nudging.

Dense surface

air tempera-

ture.

Nudging applied everywhere over the

ocean, except on the sea ice covered

area.

HIND NUDsparse The initial states are extracted from

the 96 members of a simulation with

data assimilation using the nudging.

Sparse surface

air tempera-

ture.

Nudging applied everywhere over the

ocean, except on the sea ice covered

area.

HIND SIRdense The initial states are extracted from

the 96 members of a simulation with

data assimilation using the particle fil-

ter with sequential importance resam-

pling.

Dense surface

air tempera-

ture.

Particle filter applied over the area

southward of 30̊ S.

HIND SIRsparse The initial states are extracted from

the 96 members of a simulation with

data assimilation using the particle fil-

ter with sequential importance resam-

pling.

Sparse surface

air tempera-

ture.

Particle filter applied over the area

southward of 60̊ S.

HIND NPPFdense The initial states are extracted from

the 96 members of a simulation with

data assimilation using the nudging

proposal particle filter.

Dense surface

air tempera-

ture.

Nudging applied everywhere over the

ocean, except on the sea ice covered

area. Particle filter applied over the

area southward of 30̊ S.

HIND NPPFsparse The initial states are extracted from

the 96 members of a simulation with

data assimilation using the nudging

proposal particle filter.

Sparse surface

air tempera-

ture.

Nudging applied everywhere over the

ocean, except on the sea ice covered

area. Particle filter applied over the

area southward of 60̊ S.

Table 1: Summary of the initialisation methods applied in the hindcasts analysed in this study. All the
hindcasts are 96-member ensemble 30-yr long simulations.
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Figure 1: Mean sea ice concentration over the period 1979-2009 computed from a reference simulation
performed with the model LOVECLIM1.2 driven by external forcing. Results are shown for (a)
summer and (b) winter. The blue (black) line refers to the ice edge, i.e. the 15% concentration
limit of the model simulation (observations interpolated on LOVECLIM1.2 ocean model grid,
Comiso, 1999, updated daily).
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Figure 2: (a) Prognostic potential predictability and (b) anomaly correlation coefficient of the ice edge
location computed from the hindcast HIND perfect. The white (a) or black (b) crosses highlight
the values that are not significant at the 95% level. The white areas correspond to undefined
values coinciding with longitudes nearly free of sea ice during summer months.
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Figure 3: (a) ACC of the annual mean ocean heat content (OHC). (b) Correlation between the annual mean
ocean heat content and the ice edge location. The ocean heat content is computed southward of
60̊ S and between 0 and 100m depth. The black (a) or white (b) crosses highlight the values that
are not significant at the 95% level. The white areas correspond to undefined values coinciding
with longitudes nearly free of sea ice during summer months.
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Figure 4: Prognostic potential predictability (a, b) and anomaly correlation coefficient (c, d) for summer
(left column) and winter (right column) sea ice extent. The different colors correspond to different
initialisation methods. Colored solid lines correspond to an initialisation with dense data, while
colored dashed lines correspond to an initialisation with sparse data. The dashed black lines show
the 95% significant level. For the PPP, the 95% significant level is higher for winter (b) than for
summer (a) sea ice extent. This is due to the slightly larger persistence characterising winter sea
ice extent leading to a fewer number of degrees of freedom used to perform the significance test.
The grey line in (a) and (b) corresponds to the square of the autocorrelation that indicates the
predictability arising from the persistence.

40



Longitude (°E)

(b) JAS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Longitude (°E)

(a) JFM

PPP of the trend in ice edge location

L
e

n
g

th
 o

f 
ti
m

e
 p

e
ri
o

d
 (

y
r)

L
e

n
g

th
 o

f 
ti
m

e
 p

e
ri
o

d
 (

y
r)

0 50 100 150 200 250 300 350
10

12

14

16

18

20

22

24

26

28

30

 

 

0 50 100 150 200 250 300 350
10

12

14

16

18

20

22

24

26

28

30

 

 

HIND_perfectHIND_perfect

Figure 5: PPP of the trend for the hindcasts HIND perfect in (a) summer and (b) winter ice edge location
for increasing length of the time period over which the trends are computed. The white crosses
highlight the values that are not significant at the 95% level.
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Figure 6: Correlation between the trend of the hindcasts ensemble mean and the trend of the pseudo-
observations of the ice edge location in summer (left column) and in winter (right column) for
the hindcast HIND perfect (a, b) and HIND noinit (c, d). The vertical axis refers to increasing
length of the time period over which the trends are computed. The black crosses highlight the
values that are not significant at the 95% level. The white areas correspond to undefined values.
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Figure 7: (a) Correlation between the trend in annual mean ocean heat content from the hindcasts and the
one from the pseudo-observations. Correlation between the trend in summer (b) and winter (c)
ice edge and the trend in annual mean ocean heat content. The vertical axis refers to increasing
length of the time period over which the trends are computed. For each longitude, the ocean
heat content is computed southward of 60̊ S and between 0 and -100 m in the ocean. The black
(a) and white (b, c) crosses highlight the values that are not significant at the 95% level.
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Figure 8: Prognostic potential predictability (a, b) and correlation with the pseudo-observations (c, d)
of the trends in summer (left column) and winter (right column) sea ice extent, for increasing
length of the time period over which the trends are computed. The different colors correspond
to different initialisation methods. The dashed black lines show the 95% significance level. For
the PPP (a, b), this significance level varies with the length of time period because it takes into
account the autocorrelation of the trends computed over successive time periods used to compute
the climatological variance of the trend (σ2 in Eq. (1)). This autocorrelation depends on the
length of time period used to compute the trends.
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Figure 9: Correlation between the trends in (a) summer and (b) winter sea ice extents from the hind-
casts and the annual mean sea ice extent from the pseudo-observations the year preceding the
initialisation of the hindcasts (colored dashed lines with circle markers). Correlation between
the trend in annual mean ocean heat content from the hindcasts and the annual mean ocean
heat content from the pseudo-observations the year preceding the initialisation of the hindcasts
(colored dotted lines with triangle markers). Correlation between the trend in sea ice extent
from the hindcast and the trend in ocean heat content from the hindcasts (solid lines), for (a)
summer and (b) winter sea ice extents. The ocean heat content is computed around Antarctica,
southward of 60̊ S and between 0 and -100 m in the ocean. The x-axis refers the the increasing
length of the time period over which the trends are computed.
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Figure 10: Correlation of the trends in annual mean ocean heat content between the hindcasts and the
pseudo-observations, for increasing length of the time period over which the trends are com-
puted. The ocean heat content is computed around Antarctica, southward of 60̊ S and between
0 and -100 m in the ocean. The dashed black lines show the 95% significance level.
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