272 research outputs found

    Collaborative Contagion: A Case Study in Curriculum Development, Distribution, and Adoption

    Get PDF
    The collaborative contagion model is the culmination of a three‐year project designed first to develop a curriculum in business ethics and entrepreneurship (BE&E), then to increase the adoption of that curriculum by leveraging professional educators’ established networks. The development of a new curriculum, the collaborative portion of the program, was accomplished through a series of four‐day, in‐person disruptive innovation workshops (DIWs), after which educators continued their working relationships in a specially developed online community. To distribute this curriculum, we developed the contagion portion of the model, through which we encouraged and incentivized not only adoption of the curriculum on the part of the participants themselves, but also on the part of people in their broader networks. After our first year of workshops, 18 K‐12 and 21 higher education participants helped formulate 10 modules and 60 grade‐specific K‐12 lesson plans. We have established pilot programs at 13 separate institutions, and built partnerships with seven organizations. These early results indicate that the collaborative contagion model is a viable, and potentially strong method by which curricular materials can be developed, and then disseminated to a broad audience

    Population genomic analysis of North American eastern wolves (Canic lycaon) support their conservation priority status

    Get PDF
    The threatened eastern wolf is found predominantly in protected areas of central Ontario and has an evolutionary history obscured by interbreeding with coyotes and gray wolves, which challenges its conservation status and subsequent management. Here, we used a population genomics approach to uncover spatial patterns of variation in 281 canids in central Ontario and the Great Lakes region. This represents the first genome-wide single nucleotide polymorphism (SNP) dataset with substantial sample sizes of representative populations. Although they comprise their own genetic cluster, we found evidence of eastern wolf dispersal outside of the boundaries of protected areas, in that the frequency of eastern wolf genetic variation decreases with increasing distance from provincial parks. We detected eastern wolf alleles in admixed coyotes along the northeastern regions of Lake Huron and Lake Ontario. Our analyses confirm the unique genomic composition of eastern wolves, which are mostly restricted to small fragmented patches of protected habitat in central Ontario. We hope this work will encourage an innovative discussion regarding a plan for managed introgression, which could conserve eastern wolf genetic material in any genome regardless of their potential mosaic ancestry composition and the habitats that promote them

    Predictions of avian Plasmodium expansion under climate change.

    Get PDF
    International audienceVector-borne diseases are particularly responsive to changing environmental conditions. Diurnal temperature variation has been identified as a particularly important factor for the development of malaria parasites within vectors. Here, we conducted a survey across France, screening populations of the house sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to increase in locations where transmission already occurs. Our findings, based on remote sensing tools coupled with empirical data suggest that climatic change will significantly alter transmission of malaria parasites

    Multi-century trends to wetter winters and drier summers in the England and Wales precipitation series explained by observational and sampling bias in early records

    Get PDF
    Globally, few precipitation records extend to the 18th century. The England Wales Precipitation (EWP) series is a notable exception with continuous monthly records from 1766. EWP has found widespread use across diverse fields of research including trend detection, evaluation of climate model simulations, as a proxy for mid-latitude atmospheric circulation, a predictor in long-term European gridded precipitation data sets, the assessment of drought and extremes, tree-ring reconstructions and as a benchmark for other regional series. A key finding from EWP has been the multi-centennial trends towards wetter winters and drier summers. We statistically reconstruct seasonal EWP using independent, quality-assured temperature, pressure and circulation indices. Using a sleet and snow series for the UK derived by Profs. Gordon Manley and Elizabeth Shaw to examine winter reconstructions, we show that precipitation totals for pre-1870 winters are likely biased low due to gauge under-catch of snowfall and a higher incidence of snowfall during this period. When these factors are accounted for in our reconstructions, the observed trend to wetter winters in EWP is no longer evident. For summer, we find that pre-1820 precipitation totals are too high, likely due to decreasing network density and less certain data at key stations. A significant trend to drier summers is not robustly present in our reconstructions of the EWP series. While our findings are more certain for winter than summer, we highlight (a) that extreme caution should be exercised when using EWP to make inferences about multi-centennial trends, and; (b) that assessments of 18th and 19th Century winter precipitation should be aware of potential snow biases in early records. Our findings underline the importance of continual re-appraisal of established long-term climate data sets as new evidence becomes available. It is also likely that the identified biases in winter EWP have distorted many other long-term European precipitation series

    Cancellous bone and theropod dinosaur locomotion. Part I—an examination of cancellous bone architecture in the hindlimb bones of theropods

    Get PDF
    This paper is the first of a three-part series that investigates the architecture of cancellous (‘spongy’) bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and has previously been used to infer locomotor biomechanics in extinct tetrapod vertebrates, especially primates. Despite great promise, cancellous bone architecture has remained little utilized for investigating locomotion in many other extinct vertebrate groups, such as dinosaurs. Documentation and quantification of architectural patterns across a whole bone, and across multiple bones, can provide much information on cancellous bone architectural patterns and variation across species. Additionally, this also lends itself to analysis of the musculoskeletal biomechanical factors involved in a direct, mechanistic fashion. On this premise, computed tomographic and image analysis techniques were used to describe and analyse the three-dimensional architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs for the first time. A comprehensive survey across many extant and extinct species is produced, identifying several patterns of similarity and contrast between groups. For instance, more stemward non-avian theropods (e.g. ceratosaurs and tyrannosaurids) exhibit cancellous bone architectures more comparable to that present in humans, whereas species more closely related to birds (e.g. paravians) exhibit architectural patterns bearing greater similarity to those of extant birds. Many of the observed patterns may be linked to particular aspects of locomotor biomechanics, such as the degree of hip or knee flexion during stance and gait. A further important observation is the abundance of markedly oblique trabeculae in the diaphyses of the femur and tibia of birds, which in large species produces spiralling patterns along the endosteal surface. Not only do these observations provide new insight into theropod anatomy and behaviour, they also provide the foundation for mechanistic testing of locomotor hypotheses via musculoskeletal biomechanical modelling

    Lumbar Vertebral Body Bone Microstructural Scaling in Small to Medium‐Sized Strepsirhines

    Full text link
    Bone mass, architecture, and tissue mineral density contribute to bone strength. As body mass (BM) increases any one or combination of these properties could change to maintain structural integrity. To better understand the structural origins of vertebral fragility and gain insight into the mechanisms that govern bone adaptation, we conducted an integrative analysis of bone mass and microarchitecture in the last lumbar vertebral body from nine strepsirhine species, ranging in size from 42 g ( Microcebus rufus ) to 2,440 g ( Eulemur macaco ). Bone mass and architecture were assessed via ”CT for the whole body and spherical volumes of interest (VOI). Allometric equations were estimated and compared with predictions for geometric scaling, assuming axial compression as the dominant loading regime. Bone mass, microarchitectural, and vertebral body geometric variables predominantly scaled isometrically. Among structural variables, the degree of anisotropy (Tb.DA) was the only parameter independent of BM and other trabecular architectural variables. Tb.DA was related to positional behavior. Orthograde primates had higher average Tb.DA (1.60) and more craniocaudally oriented trabeculae while lorisines had the lowest Tb.DA (1.25), as well as variably oriented trabeculae. Finally, lorisines had the highest ratio of trabecular bone volume to cortical shell volume (∌3x) and while there appears to be flexibility in this ratio, the total bone volume (trabecular + cortical) scales isometrically (BM 1.23 , r 2 = 0.93) and appears tightly constrained. The common pattern of isometry in our measurements leaves open the question of how vertebral bodies in strepsirhine species compensate for increased BM. Anat Rec, 2013. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96425/1/22632_ftp.pd

    A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?

    Get PDF
    Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past
    • 

    corecore