551 research outputs found

    A short history of pterosaur research

    Get PDF

    Anderson localization in sigma models

    Full text link
    In QCD above the chiral restoration temperature there exists an Anderson transition in the fermion spectrum from localized to delocalized modes. We investigate whether the same holds for nonlinear sigma models which share properties like dynamical mass generation and asymptotic freedom with QCD. In particular we study the spectra of fermions coupled to (quenched) CP(N-1) configurations at high temperatures. We compare results in two and three space-time dimensions: in two dimensions the Anderson transition is absent, since all fermion modes are localized, while in three dimensions it is present. Our measurements include a more recent observable characterizing level spacings: the distribution of ratios of consecutive level spacings.Comment: 7 pages, Lattice 2017, proceeding

    Localization, dualization, and magnetic fields in strongly coupled quantum field theories

    Get PDF
    This thesis is comprised of three parts. In part one Anderson localization is studied in the context of QCD, an Anderson-Ising model, and CP(N-1). For the first two the effect of a background magnetic field on the localization properties is studied.In CP(N-1) localization of fermion eigenmodes in the background of the (auxiliary) U(1) gauge field is investigated. In all three cases a transition from localized modes near the origin and delocalized modes in the bulk of the spectrum can be observed.The second part is concerned with Landau levels in QCD. The Landau levels are identified and their contributions to several observables are calculated using lattice methods.The third part deals with the sign problem in QCD at nonzero density. It is shown that the sign problem is exclusively fermionic in nature by considering \emph{scalar} QCD, i.e., QCD with scalar quarks. In this scalar theory the sign problem is found to be absent for up to three flavors, when using a formulation with dual variables

    Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging

    Get PDF
    Recent progress in digital health data recording, advances in computing power, and methodological approaches that extract information from data as artificial intelligence are expected to have a disruptive impact on technology in medicine. One of the potential benefits is the ability to extract new and essential insights from the vast amount of data generated during health care delivery every day. Cardiovascular imaging is boosted by new intelligent automatic methods to manage, process, segment, and analyze petabytes of image data exceeding historical manual capacities. Algorithms that learn from data raise new challenges for regulatory bodies. Partially autonomous behavior and adaptive modifications and a lack of transparency in deriving evidence from complex data pose considerable problems. Controlling new technologies requires new controlling techniques and ongoing regulatory research. All stakeholders must participate in the quest to find a fair balance between innovation and regulation. The regulatory approach to artificial intelligence must be risk-based and resilient. A focus on unknown emerging risks demands continuous surveillance and clinical evaluation during the total product life cycle. Since learning algorithms are data-driven, high-quality data is fundamental for good machine learning practice. Mining, processing, validation, governance, and data control must account for bias, error, inappropriate use, drifts, and shifts, particularly in real-world data. Regulators worldwide are tackling twenty-first century challenges raised by “learning” medical devices. Ethical concerns and regulatory approaches are presented. The paper concludes with a discussion on the future of responsible artificial intelligence

    Diagrammatic representation of scalar QCD and sign problem at nonzero chemical potential

    Get PDF
    We consider QCD at strong coupling with scalar quarks coupled to a chemical potential. Performing the link integrals we present a diagrammatic representation of the path integral weight. It is based on mesonic and baryonic building blocks, in close analogy to fermionic QCD. Likewise, the baryon loops are subject to a manifest conservation of the baryon number. The sign problem is expected to disappear in this representation and we do confirm this for three flavors, where a scalar baryon can be built and, thus, a dependence on the chemical potential occurs. For higher flavor number, we analyze examples for a potential sign problem in the baryon sector and conjecture that all weights are positive upon exploring the current conservation of each flavor

    A new small-bodied azhdarchoid pterosaur from the Lower Cretaceous of England and its implications for pterosaur anatomy, diversity and phylogeny

    Get PDF
    BACKGROUND: Pterosaurs have been known from the Cretaceous sediments of the Isle of Wight (southern England, United Kingdom) since 1870. We describe the three-dimensional pelvic girdle and associated vertebrae of a small near-adult pterodactyloid from the Atherfield Clay Formation (lower Aptian, Lower Cretaceous). Despite acknowledged variation in the pterosaur pelvis, previous studies have not adequately sampled or incorporated pelvic characters into phylogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: The new specimen represents the new taxon Vectidraco daisymorrisae gen. et sp. nov., diagnosed by the presence of a concavity posterodorsal to the acetabulum and the form of its postacetabular process on the ilium. Several characters suggest that Vectidraco belongs to Azhdarchoidea. We constructed a pelvis-only phylogenetic analysis to test whether the pterosaur pelvis carries a useful phylogenetic signal. Resolution in recovered trees was poor, but they approximately matched trees recovered from analyses of total evidence. We also added Vectidraco and our pelvic characters to an existing total-evidence matrix for pterosaurs. Both analyses recovered Vectidraco within Azhdarchoidea. CONCLUSIONS/ SIGNIFICANCE: The Lower Cretaceous strata of western Europe have yielded members of several pterosaur lineages, but Aptian pterosaurs from western Europe are rare. With a pelvis length of 40 mm, the new animal would have had a total length of c. 350 mm, and a wingspan of c. 750 mm. Barremian and Aptian pterodactyloids from western Europe show that small-bodied azhdarchoids lived alongside ornithocheirids and istiodactylids. This assemblage is similar in terms of which lineages are represented to the coeval beds of Liaoning, China; however, the number of species and specimens present at Liaoning is much higher. While the general phylogenetic composition of western European and Chinese communities appear to have been approximately similar, the differences may be due to different palaeoenvironmental and depositional settings. The western Europe pterodactyloid record may therefore be artificially low in diversity due to preservational factors
    corecore