717 research outputs found

    Gross\u27ed Out: The Seventh Circuit\u27s Over-Extension of \u3cem\u3eGross v. FBL Financial Services\u3c/em\u3e into the ADA Context

    Get PDF
    In its recent decision in Serwatka v. Rockwell Automation, Inc., the Seventh Circuit overruled its prior circuit precedent and found that the Americans with Disabilities Act (ADA) does not create liability for mixed-motive claims. As a result of this decision, if an employer impermissibly considers an employee\u27s disability in making a decision adverse to the employee, courts will not hold the employer liable provided that the plaintiff cannot also show that such consideration was the but-for cause of the challenged action. Prior to 2009, the Seventh Circuit had recognized mixed-motive causation under the ADA; it relied primarily on Price Waterhouse v. Hopkins, which found that Title VII\u27s phrase because of allowed for mixed-motive causation. Later, in light of the 1991 Amendments to Title VII\u27s causation language, the Supreme Court in Gross v. FBL Financial Services held that mixed-motive claims were not viable under the Age Discrimination in Employment Act (ADEA). Serwatka extended this ADEA case to the ADA and drastically changed the availability of protection to people with disabilities who allege discrimination at their workplace. This Note will examine to what extent a circuit court needs to adhere to Supreme Court precedent analyzing identical language from a different statute and will ultimately conclude that Serwatka improperly extended the Court\u27s ADEA analysis to the ADA context. This Note will argue that, instead of relying on Gross, Serwatka should have relied on Price Waterhouse because its underlying rationale is applicable to the ADA and the 1991 Amendments did not undermine its continued viability as instructive precedent. Finally, this Note explores the impact that the 2008 ADA Amendments will have on the issue and ultimately concludes that the Amendments do not alter the strong arguments advocating for the recognition of mixed-motive claims under the ADA

    Are European bioenergy targets achievable? : an evaluation based on thermoeconomic and environmental indicators

    Get PDF
    Nowadays, it is globally accepted the need of increasing the share of renewable energy to minimize global warming effects. Biomass is a potential alternative to partly fulfill energy policy targets, although unlike solar or wind energy, its availability is limited and stochastically distributed. Hence, the most effective biomass-to-bioenergy route should be selected which, in turn, would lead to more competitive prices with regard to conventional fossil fuels. However, selection of the best conversion technology generates some controversy as the politicians, industry or the scientific community have their own preferences. An inherent challenge is, thus, to develop a multidimensional model that integrates different perspectives. Another point of discussion is related to the different biomass sources that can be used for energy purposes. In effect, 1st generation biofuels are currently being questioned for using energy crops which may directly compete with food production. Moreover, some life-cycle studies reveal that several 1st generation biofuels exceed the emissions level of fossil fuels. Conversely, 2nd generation biofuels are now being developed as a possible better alternative to profit from inedible crops, while operating at higher efficiencies in larger conversion plants. In the thesis, we present the evaluation of five different 2nd generation biofuels (i.e., Synthetic Natural Gas (SNG), methanol, Fischer-Tropsch fuels, hydrogen and bioelectricity) for their potential implementation in the European Energy market. Evaluation is made following an own multidimensional "3E" approach, which combines efficiency, economic and environmental parameters. For that purpose, forestry and straw wastes availability of EU-25 countries is firstly calculated and allocated within all regions. The five production chains are then modeled in Aspen Plus and Icarus for efficiency (exergy) and economic evaluation respectively, whereas a LCA is carried out to assess the environmental impact. Simulations are performed at different production scales to identify the optimal plant size for each biofuel. Evaluation is finally completed by considering the different motivations of policy makers, industry and scientific community. Hence, different scenarios are analyzed, ranging from maximizing biofuels for road transport in short and long-term future (i.e., ICE and FCV vehicles), optimizing SNG production, maximizing the renewable share in electricity production (i.e., new bio-based BIGCC plants or cofiring) and, ultimately, maximizing CO2 emissions reduction. Results determine how feasible is to fulfill the different European Energy Policy when using only forestry and straw residues, which are the potential global CO2 emissions reduction and the average biofuels and bioelectricity prices. Bioelectricity generation turns out to be the best alternative from a techno-economic and environmental point of view. About 381 to 461 Mtn CO2 could be saved annually if all European forest and straw residues were used in either cofiring or new BIGCC plants. The corresponding price difference between bioenergy and fossil alternatives are also the lowest for the bioelectricity scenario, i.e., 3-4 Billion €/year respectively, with an estimated ‘virtual’ ecocost lying in the range of 7-8 €/tn CO2. It is also observed that cofiring is preferred over other biofuels production when the aim is to reduce CO2 emissions. On the other hand, if bioelectricity is summed to solar and wind energy, about 31% of the electricity production by 2020 could be renewable, i.e., 10% points higher than the target of Directive 2001/77/EC. In case of prioritizing Fischer-Tropsch fuels, the share of biofuels in transport would be 8.0-9.5%, which is slightly below the 10% share target of Directive 2009/28/EC. However, this option implies relatively higher capital investments. In any case, there is not enough forest and straw residues in Europe to the targets of both Directives. Individual biofuels comparison reveals that SNG and bioelectricity yield the highest exergetic production efficiencies for wood-fuelled plants (i.e., up to 45.5%). This statement is translated into the lowest biofuel prices (i.e., 17-20 and 24 €/GJ for SNG and bioelectricity in the Netherlands). However, SNG prices are about 2-times higher than natural gas in most of the European countries, with the exception of Sweden. Fischer-Tropsch and methanol can be produced at similar end-user prices, which are relatively close to fossil diesel prices including taxes. However, they emit more CO2 than the other biofuel options. In particular, methanol even releases more CO2 emissions than fossil diesel in most of the European countries. When the efficiency analysis is extended to a well-to-wheel (WTW) perspective (i.e., from biomass collection to final biofuel use in vehicles), the bioelectricity option is again the most efficient route, with energy ratios in the range of actual oil-based systems (i.e., 17-19%). H2 attains the second best WTW efficiencies values (i.e., 14-15%), but it is also the most expensive biofuel per unit of output energy. Moreover, safety concerns about H2 distribution queries the viability of this biofuel for the long-term future. SNG and Fischer-Tropsch systems attain similar efficiencies (i.e., 9-11%) whereas methanol is the least efficient (i.e., 5-6%)

    Charles Whitney Gilmore – The Forgotten “Dinosaur Hunter”

    Get PDF
    Charles Whitney Gilmore (1874-1945), affectionately known as “Charlie” to his colleagues, was one of the last major figures of America’s “Golden Age” of dinosaur hunting. It is largely due to his efforts that the Department of Paleobiology is now home to one of the premier collections of dinosaurs and other fossil reptiles in the United States. Early in his career Gilmore commenced scientific studies of dinosaurs and many other groups of extinct reptiles, starting with the rich material from the Marsh Collection. His monographs on the skeletal structure of the armored Stegosaurus (1914), the predatory dinosaurs Allosaurus and Ceratosaurus (1920), and the sauropod Apatosaurus (1936) remain essential references for any serious student of dinosaurs. Working at a time when there were few professional vertebrate paleontologists, Gilmore also received invitations from other institutions, including the Carnegie Museum and the American Museum of Natural History, to study and publish on important specimens of dinosaurs and other fossil reptiles from their respective collections. Many important papers, including the first monograph on early Late Cretaceous dinosaurs from Inner Mongolia (China), resulted from these “extramural” research efforts. The collections of fossil reptiles in the Division of Vertebrate Paleontology offer eloquent testimony of Gilmore’s devotion and efforts and will continue to be an unparalleled resource for research and exhibition

    Probabilistic structural mechanics research for parallel processing computers

    Get PDF
    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical

    Portable parallel stochastic optimization for the design of aeropropulsion components

    Get PDF
    This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically

    Parallel Computing for Probabilistic Response Analysis of High Temperature Composites

    Get PDF
    The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations

    The oldest record of Alvarezsauridae (Dinosauria: Theropoda) in the Northern Hemisphere

    Get PDF
    © 2017, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Procoelous caudal vertebrae, a carpometacarpus with a hypertrophied metacarpal II, and robust proximal and ungual phalanges of manual digit II of a small theropod dinosaur from the Upper Cretaceous (Turonian) Bissekty Formation at Dzharakuduk, Uzbekistan, show unequivocal synapomorphies of the clade Alvarezsauridae and thus are referred to it. The caudal vertebrae have a unique longitudinal canal within the neural arch. The carpometacarpus, with metacarpal III occupying about one third of the width of the carpometacarpus, shows the most plesiomorphic stage of the evolution of the forelimb among known alvarezsaurids. The proximal phalanx of manual digit II differs from the corresponding bone in Parvicursorinae in having a less asymmetrical proximal articular surface without a dorsal process and short ventral ridges. The ungual phalanx of manual digit II has laterally open ventral foramina. The Bissekty alvarezsaurid possibly represents a basal parvicursorine and is the stratigraphically oldest known alvarezsaurid in Asia known to date

    Colobops: a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite

    Get PDF
    Correctly identifying taxa at the root of major clades or the oldest clade-representatives is critical for meaningful interpretations of evolution. A small, partially crushed skull from the Late Triassic (Norian) of Connecticut, USA, originally described as an indeterminate rhynchocephalian saurian, was recently named Colobops noviportensis and reinterpreted as sister to all remaining Rhynchosauria, one of the earliest and globally distributed groups of herbivorous reptiles. It was also interpreted as having an exceptionally reinforced snout and powerful bite based on an especially large supratemporal fenestra. Here, after a re-analysis of the original scan data, we show that the skull was strongly dorsoventrally compressed post-mortem, with most bones out of life position. The cranial anatomy is consistent with that of other rhynchocephalian lepidosauromorphs, not rhynchosaurs. The ‘reinforced snout' region and the ‘exceptionally enlarged temporal region’ are preservational artefacts and not exceptional among clevosaurid rhynchocephalians. Colobops is thus not a key taxon for understanding diapsid feeding apparatus evolution
    corecore