177 research outputs found

    Polarimetric Observations of 15 AGNs at High Frequencies

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe have obtained total and polarized intensity images of 15 AGNs with the VLBA at 7 mm at 17 epochs from 25/26 March 1998 to 14 April 2001. The VLBA observations are accompanied at many epochs by simultaneous mea- surements of polarization at 1.35/0.85 mm as well as less frequent simultaneous optical polarization measurements. We discuss the similarities and complexities of polarization behavior at different frequencies along with the VLBI properties

    Deuteron -- α\alpha interaction by inversion of RGM S-matrix: determination of spin-orbit potential for spin-1 projectile

    Full text link
    The iterative-perturbative (IP) procedure for S-matrix to potential inversion is applied to spin-one projectiles for the restricted case of vector spin-orbit interaction only. In order to evaluate this extension of IP inversion we have inverted the multi-channel RGM SljS_{lj} of Kanada et al for deuterons scattering from 4^4He with deuteron distortion and then compared the central components with those derived from RGM with spin set to zero. Attention is given to the question of how well the resulting potentials are established. Reliable spin-1 inversion is demonstrated. Results relating to inversion, to deuteron-nucleus interactions and to RGM are presented and suggest the range of nuclear interaction information which the procedure makes possible. Unusual non-locality and parity dependence effects are found; these are of possible relevance to generic properties of nuclear potentials.Comment: 15 pages LaTeX plus 6 postscript figure

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for B_s --> mu+mu- and B_d --> mu+mu- Decays with CDF II

    Get PDF
    A search has been performed for B_s --> mu+mu- and B_d --> mu+mu- decays using 7/fb of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B_d candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of BF(B_d-->mu+mu-) < 6.0E-9 at 95% confidence level. We observe an excess of B_s candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expected standard model rate of B_s --> mu+mu- could produce such an excess or larger is 1.9%. These data are used to determine BF(B_s-->mu+mu-) = (1.8^{+1.1}_{-0.9})E-8 and provide an upper limit of BF(B_s -->mu+mu-) < 4.0E-8 at 95% confidence level.Comment: 7 pages, 1 figure; version accepted by PR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Higgs Physics at the CLIC Electron-Positron Linear Collider

    Get PDF
    The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- -> ZH) and WW-fusion (e+e- -> Hnunu), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma_H, and model-independent determinations of the Higgs couplings. Operation at sqrt(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+e- -> ttH and e+e- -> HHnunu allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.The Compact Linear Collider (CLIC) is an option for a future e+e{\mathrm{e}^{+}}{\mathrm{e}^{-}} collider operating at centre-of-mass energies up to 3TeV3\,\text {TeV} , providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: s=350GeV\sqrt{s} = 350\,\text {GeV} , 1.4 and 3TeV3\,\text {TeV} . The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ( e+eZH{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow {\mathrm{Z}} {\mathrm{H}} ) and WW{\mathrm{W}} {\mathrm{W}} -fusion ( e+eHν ⁣eνˉ ⁣e{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow {\mathrm{H}} {{\nu }}_{\!\mathrm{e}} {\bar{{\nu }}}_{\!\mathrm{e}} ), resulting in precise measurements of the production cross sections, the Higgs total decay width ΓH\varGamma _{{\mathrm{H}}} , and model-independent determinations of the Higgs couplings. Operation at s>1TeV\sqrt{s} > 1\,\text {TeV} provides high-statistics samples of Higgs bosons produced through WW{\mathrm{W}} {\mathrm{W}} -fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+ettˉH{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow \mathrm{t} {\bar{\mathrm{t}}} {\mathrm{H}} and e+eHHν ⁣eνˉ ⁣e{\mathrm{e}^{+}}{\mathrm{e}^{-}} \rightarrow {\mathrm{H}} {\mathrm{H}} {{\nu }}_{\!\mathrm{e}} {\bar{{\nu }}}_{\!\mathrm{e}} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit
    corecore