2,218 research outputs found
Interplay of quantum and classical fluctuations near quantum critical points
For a system near a quantum critical point (QCP), above its lower critical
dimension , there is in general a critical line of second order phase
transitions that separates the broken symmetry phase at finite temperatures
from the disordered phase. The phase transitions along this line are governed
by thermal critical exponents that are different from those associated with the
quantum critical point. We point out that, if the effective dimension of the
QCP, ( is the Euclidean dimension of the system and the
dynamic quantum critical exponent) is above its upper critical dimension ,
there is an intermingle of classical (thermal) and quantum critical
fluctuations near the QCP. This is due to the breakdown of the generalized
scaling relation between the shift exponent of the critical
line and the crossover exponent , for by a \textit{dangerous
irrelevant interaction}. This phenomenon has clear experimental consequences,
like the suppression of the amplitude of classical critical fluctuations near
the line of finite temperature phase transitions as the critical temperature is
reduced approaching the QCP.Comment: 10 pages, 6 figures, to be published in Brazilian Journal of Physic
Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene
Middle ear microbial profiles of indigenous Filipinos with chronic otitis media. All panels compare carriers with non-carriers of the A2ML1 duplication variant. Panel description: (A) ĂÄ
-diversity by observed OTUs; (B) ĂÄ
-diversity by the Shannon diversity index; (C) ĂË-diversity from unweighted UniFrac principal coordinate analysis; (D) ĂË-diversity from weighted UniFrac principal coordinate analysis. (PDF 1019 kb
Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions
Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO2). The efficiency of the scCO2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6â10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1â16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h
Trypanosoma cruzi Produces the Specialized Proresolving Mediators Resolvin D1, Resolvin D5, and Resolvin E2.
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD). CD is a persistent, lifelong infection affecting many organs, most notably the heart, where it may result in acute myocarditis and chronic cardiomyopathy. The pathological features include myocardial inflammation and fibrosis. In the Brazil strain-infected CD-1 mouse, which recapitulates many of the features of human infection, we found increased plasma levels of resolvin D1 (RvD1), a specialized proresolving mediator of inflammation, during both the acute and chronic phases of infection (>100 days postinfection) as determined by enzyme-linked immunosorbent assay (ELISA). Additionally, ELISA on lysates of trypomastigotes of both strains Tulahuen and Brazil revealed elevated levels of RvD1 compared with lysates of cultured epimastigotes of T. cruzi, tachyzoites of Toxoplasma gondii, trypomastigotes of Trypanosoma brucei, cultured L6E9 myoblasts, and culture medium containing no cells. Lysates of T. cruzi-infected myoblasts also displayed increased levels of RvD1. Lipid mediator metabolomics confirmed that the trypomastigotes of T. cruzi produced RvD1, RvD5, and RvE2, which have been demonstrated to modulate the host response to bacterial infections. Plasma RvD1 levels may be both host and parasite derived. Since T. cruzi synthesizes specialized proresolving mediators of inflammation, as well as proinflammatory eicosanoids, such as thromboxane A2, one may speculate that by using these lipid mediators to modulate its microenvironment, the parasite is able to survive.This work was supported by NIH Grants PO1 GM095467(CNS) and AI-214000 (HBT
Modified Chaplygin Gas as a Unified Dark Matter and Dark Energy Model and Cosmic Constraints
A modified Chaplygin gas model (MCG),
,
as a unified dark matter model and dark energy model is constrained by using
current available cosmic observational data points which include type Ia
supernovae, baryon acoustic oscillation and the seventh year full WMAP data
points. As a contrast to the consideration in the literatures, we {\it do not}
separate the MCG into two components, i.e. dark mater and dark energy
component, but we take it as a whole energy component-a unified dark sector. By
using Markov Chain Monte Carlo method, a tight constraint is obtained: , and .}Comment: 6 pages, 3 figure
Modified Gravity and Cosmology
In this review we present a thoroughly comprehensive survey of recent work on
modified theories of gravity and their cosmological consequences. Amongst other
things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and
Bimetric theories, as well as TeVeS, f(R), general higher-order theories,
Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra
dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher
co-dimension braneworlds. We also review attempts to construct a Parameterised
Post-Friedmannian formalism, that can be used to constrain deviations from
General Relativity in cosmology, and that is suitable for comparison with data
on the largest scales. These subjects have been intensively studied over the
past decade, largely motivated by rapid progress in the field of observational
cosmology that now allows, for the first time, precision tests of fundamental
physics on the scale of the observable Universe. The purpose of this review is
to provide a reference tool for researchers and students in cosmology and
gravitational physics, as well as a self-contained, comprehensive and
up-to-date introduction to the subject as a whole.Comment: 312 pages, 15 figure
A2ML1 and otitis media : novel variants, differential expression, and relevant pathways
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.Peer reviewe
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- âŚ