1,110 research outputs found

    Gravitational Waves from the Non-Perturbative Decay of Condensates along Supersymmetric Flat Directions

    Full text link
    It has recently been shown that specific non-perturbative effects may lead to an explosive decay of flat direction condensates in supersymmetric theories. We confirm explicitly the efficiency of this process with lattice simulations: after few rotations of the condensates in their complex plane, most of their energy is quickly converted into inhomogeneous fluctuations. We then point out that this generates a gravitational wave background which depends on the inflaton sector and falls in the Hz-kHz frequency range today. We compute the resulting spectrum and study how it depends on the parameters. We show that these gravity waves can be observable by upcoming experiments like Advanced LIGO and depend crucially on (i) the initial VEV of flat directions when they start to oscillate, (ii) their soft SUSY-breaking mass and (iii) the reheat temperature of the universe. This signal could open a new observational window on inflation and low-energy supersymmetry.Comment: v2: minor modifications, refs. added. Slightly longer version than the one published in Phys.Rev.Let

    Colin Lyons : Automatic Ruins

    Get PDF

    Colin Lyons : vestiges automatiques

    Get PDF

    Preheating after Multi-field Inflation

    Full text link
    In this note I study preheating after multi-field inflation to assess the feasibility of parametric resonance. An intuitive argument for the suppression of resonances due to dephasing of fields in generic multi-field models is presented. This effect is absent in effective single field models, rendering them inappropriate for the study of preheating.Comment: 4 pages, proceedings for work presented at Cargese 2008, COSMO08 and UniverseNet second annual meetin

    Methods for Improving the Tone Mapping for Backward Compatible High Dynamic Range Image and Video Coding

    Get PDF
    International audienceBackward compatibility for high dynamic range image and video compression forms one of the essential requirements in the transition phase from low dynamic range (LDR) displays to high dynamic range (HDR) displays. In a recent work [1], the problems of tone mapping and HDR video coding are originally fused together in the same mathematical framework, and an optimized solution for tone mapping is achieved in terms of the mean square error (MSE) of the logarithm of luminance values. In this paper, we improve this pioneer study in three aspects by considering its three shortcomings. First, the proposed method [1] works over the logarithms of luminance values which are not uniform with respect to Human Visual System (HVS) sensitivity. We propose to use the perceptually uniform luminance values as an alternative for the optimization of tone mapping curve. Second, the proposed method [1] does not take the quality of the resulting tone mapped images into account during the formulation in contrary to the main goal of tone mapping research. We include the LDR image quality as a constraint to the optimization problem and develop a generic methodology to compromise the trade-off between HDR and LDR image qualities for coding. Third, the proposed method [1] simply applies a low-pass filter to the generated tone curves for video frames to avoid flickering during the adaptation of the method to the video. We instead include an HVS based flickering constraint to the optimization and derive a methodology to compromise the trade-off between the rate-distortion performance and flickering distortion. The superiority of the proposed methodologies is verified with experiments on HDR images and video sequences

    Encoder and Decoder Side Global and Local Motion Estimation for Distributed Video Coding

    Get PDF
    International audienceIn this paper, we propose a new Distributed Video Coding (DVC) architecture where motion estimation is performed both at the encoder and decoder, effectively combining global and local motion models. We show that the proposed approach improves significantly the quality of Side Information (SI), especially for sequences with complex motion patterns. In turn, it leads to rate-distortion gains of up to 1 dB when compared to the state-of-the-art DISCOVER DVC codec

    Dangerous Angular KK/Glueball Relics in String Theory Cosmology

    Full text link
    The presence of Kaluza-Klein particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra symmetries, massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact CY manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived non-relativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.Comment: 58 pages, 11 figures, published versio

    A comparative survey on high dynamic range video compression

    Get PDF
    International audienceHigh dynamic range (HDR) video compression has until now been approached by using the high profile of existing state-of-the-art H.264/AVC (Advanced Video Coding) codec or by separately encoding low dynamic range (LDR) video and the residue resulted from the estimation of HDR video from LDR video. Although the latter approach has a distinctive advantage of providing backward compatibility to 8-bit LDR displays, the superiority of one approach to the other in terms of the rate distortion trade-off has not been verified yet. In this paper, we first give a detailed overview of the methods in these two approaches. Then, we experimentally compare two approaches with respect to different objective and perceptual metrics, such as HDR mean square error (HDR MSE), perceptually uniform peak signal to noise ratio (PU PSNR) and HDR visible difference predictor (HDR VDP). We first conclude that the optimized methods for backward compatibility to 8-bit LDR displays are superior to the method designed for high profile encoder both for 8-bit and 12-bit mappings in terms of all metrics. Second, using higher bit-depths with a high profile encoder is giving better rate-distortion performances than employing an 8-bit mapping with an 8-bit encoder for the same method, in particular when the dynamic range of the video sequence is high. Third, rather than encoding of the residue signal in backward compatible methods, changing the quantization step size of the LDR layer encoder would be sufficient to achieve a required quality. In other words, the quality of tone mapping is more important than residue encoding for the performance of HDR image and video coding
    • …
    corecore