117 research outputs found

    Predictive factors of virological success to salvage regimens containing protease inhibitors in HIV-1 infected children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The impact of HIV drug resistance mutations in salvage therapy has been widely investigated in adults. By contrast, data available of predictive value of resistance mutations in pediatric population is scarce.</p> <p>Methods</p> <p>A multicenter, retrospective, observational study was conducted in children who received rescue salvage antiretroviral therapy after virologic failure. CD4 counts and viral load were determined at baseline and 6 months after rescue intervention. Genotypic HIV-1 resistance test and virtual phenotype were assessed at baseline.</p> <p>Results</p> <p>A total of 33 children met the inclusion criteria and were included in the analysis. The median viral load (VL) and median percentage of CD4+ at baseline was 4.0 HIV-RNA log copies/ml and 23.0% respectively. The median duration that children were taking the new rescue regimen was 24.3 weeks (23.8–30.6). Overall, 47% of the 33 children achieved virological response at 24 weeks. When we compared the group of children who achieved virological response with those who did not, we found out that mean number of PI related mutations among the group of responders was 3.8 <it>vs</it>. 5.4 (p = 0.115). Moreover, the mean number of susceptible drugs according to virtual phenotype clinical cut-off for maximal virologic response was 1.7 <it>vs</it>. 0.8 and mean number of susceptible drugs according to virtual phenotype cut-off for minimal virlologic response was 2.7 <it>vs</it>. 1.3 (p < 0.01 in all cases). Eighteen children were rescued with a regimen containing a boosted-PI and virological response was significantly higher in those subjects compared with the others (61.1% <it>vs</it>. 28.6%, p < 0.01).</p> <p>Conclusion</p> <p>Salvage treatment containing ritonavir boosted-PIs in children with virological failure was very efficient. The use of new tools as virtual phenotype could help to improve virologic success in pediatric population.</p

    Antiretroviral Therapy Initiation Before, During, or After Pregnancy in HIV-1-Infected Women: Maternal Virologic, Immunologic, and Clinical Response

    Get PDF
    Pregnancy has been associated with a decreased risk of HIV disease progression in the highly active antiretroviral therapy (HAART) era. The effect of timing of HAART initiation relative to pregnancy on maternal virologic, immunologic and clinical outcomes has not been assessed.We conducted a retrospective cohort study from 1997–2005 among 112 pregnant HIV-infected women who started HAART before (N = 12), during (N = 70) or after pregnancy (N = 30).0.01). There were no statistical differences in rates of HIV disease progression between groups.HAART initiation during pregnancy was associated with better immunologic and virologic responses than initiation after pregnancy

    Prokayrotic Ubiquitin-Like Protein (Pup) Proteome of Mycobacterium tuberculosis

    Get PDF
    Prokaryotic ubiquitin-like protein (Pup) in Mycobacterium tuberculosis (Mtb) is the first known post-translational small protein modifier in prokaryotes, and targets several proteins for degradation by a bacterial proteasome in a manner akin to ubiquitin (Ub) mediated proteolysis in eukaryotes. To determine the extent of pupylation in Mtb, we used tandem affinity purification to identify its “pupylome”. Mass spectrometry identified 55 out of 604 purified proteins with confirmed pupylation sites. Forty-four proteins, including those with and without identified pupylation sites, were tested as substrates of proteolysis in Mtb. Under steady state conditions, the majority of the test proteins did not accumulate in degradation mutants, suggesting not all targets of pupylation are necessarily substrates of the proteasome under steady state conditions. Four proteins implicated in Mtb pathogenesis, Icl (isocitrate lyase), Ino1 (inositol-1-phosphate synthase), MtrA (Mtb response regulator A) and PhoP (phosphate response regulator P), showed altered levels in degradation defective Mtb. Icl, Ino1 and MtrA accumulated in Mtb degradation mutants, suggesting these proteins are targeted to the proteasome. Unexpectedly, PhoP was present in wild type Mtb but undetectable in the degradation mutants. Taken together, these data demonstrate that pupylation regulates numerous proteins in Mtb and may not always lead to degradation

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Immunocytochemical assessment of bone marrow aspirates for monitoring response to chemotherapy in small-cell lung cancer patients

    Get PDF
    Recent reports have suggested that tumour cell immunodetection in bone marrow of small-cell lung cancer patients is by far more frequent than found cytohistologically and may have clinical relevance. This study evaluates primarily the efficacy of chemotherapy as method of in vivo purging, but also the relationship of marrow involvement with survival. A total of 112 bone marrow aspirates from 30 chemo-naïve patients were stained twice using anti-NCAM antibodies, first at diagnosis and then after chemotherapy (24 patients) or at disease progression (six patients). Marrow contamination was associated with lower survival (P = 0.002), and was also detected in 7/17 patients conventionally staged as having limited disease. At multivariate analysis, marrow involvement was an independent factor of unfavourable prognosis (P = 0.033). The amount of tumour contamination, before and after chemotherapy, remained unchanged also in responders and even in the subset of patients with apparent limited disease. Following chemotherapy, bone marrow became tumour negative only in 25% of initially positive responders and in none of non-responders. Our results indicate that (i) chemotherapy is not effective in purging bone marrow even in chemo-responsive patients and (ii) a subset of patients with limited disease and negative bone marrow aspirates might have a more favourable prognosis. Š 1999 Cancer Research Campaig

    In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

    Get PDF
    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.SĂŁo Paulo Research Foundation grants: (2011/24038-1 [MRDL], 2009/08559-1 [HBdS], CAPES/IGC 04/ 2012 [MRDL, CET])

    Interferon-Îł and Proliferation Responses to Salmonella enterica Serotype Typhi Proteins in Patients with S. Typhi Bacteremia in Dhaka, Bangladesh

    Get PDF
    Salmonella enterica serotype Typhi infection is a significant global public health problem and the cause of typhoid fever. Salmonella are intracellular pathogens, and cellular immune responses are required to control and clear Salmonella infections. Despite this, there are limited data on cellular immune responses during wild type S. Typhi infection in humans. Here we report the assessment of cellular immune responses in humans with S. Typhi bacteremia through a screening approach that permitted us to evaluate interferon-Îł and proliferation responses to a number of S. Typhi antigens. We detected significant interferon-Îł CD4 and CD8 responses, as well as proliferative responses, to a number of recombinantly purified S. Typhi proteins as well as membrane preparation in infected patients. Antigen-specific interferon-Îł responses were present at the time of clinical presentation in patients and absent in healthy controls. These observations could assist in the development of interferon-Îł-based diagnostic assays for typhoid fever

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore