15 research outputs found

    Modeling Emergency Supply Flexibility in a Two-Echelon Inventory System

    Full text link

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Erratum: Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s = 8 TeV (vol 2, 024, 2014)

    Get PDF

    Identification of Allobaculum mucolyticum as a novel human intestinal mucin degrader

    Get PDF
    The human gut microbiota plays a central role in intestinal health and disease. Yet, many of its bacterial constituents are functionally still largely unexplored. A crucial prerequisite for bacterial survival and proliferation is the creation and/or exploitation of an own niche. For many bacterial species that are linked to human disease, the inner mucus layer was found to be an important niche. Allobaculum mucolyticum is a newly identified, IBD-associated species that is thought be closely associated with the host epithelium. To explore how this bacterium is able to effectively colonize this niche, we screened its genome for factors that may contribute to mucosal colonization. Up to 60 genes encoding putative Carbohydrate Active Enzymes (CAZymes) were identified in the genome of A. mucolyticum. Mass spectrometry revealed 49 CAZymes of which 26 were significantly enriched in its secretome. Functional assays demonstrated the presence of CAZyme activity in A. mucolyticum conditioned medium, degradation of human mucin O-glycans, and utilization of liberated non-terminal monosaccharides for bacterial growth. The results support a model in which sialidases and fucosidases remove terminal O-glycan sugars enabling subsequent degradation and utilization of carbohydrates for A. mucolyticum growth. A. mucolyticum CAZyme secretion may thus facilitate bacterial colonization and degradation of the mucus layer and may pose an interesting target for future therapeutic intervention

    Identification of Allobaculum mucolyticum as a novel human intestinal mucin degrader

    No full text
    The human gut microbiota plays a central role in intestinal health and disease. Yet, many of its bacterial constituents are functionally still largely unexplored. A crucial prerequisite for bacterial survival and proliferation is the creation and/or exploitation of an own niche. For many bacterial species that are linked to human disease, the inner mucus layer was found to be an important niche. Allobaculum mucolyticum is a newly identified, IBD-associated species that is thought be closely associated with the host epithelium. To explore how this bacterium is able to effectively colonize this niche, we screened its genome for factors that may contribute to mucosal colonization. Up to 60 genes encoding putative Carbohydrate Active Enzymes (CAZymes) were identified in the genome of A. mucolyticum. Mass spectrometry revealed 49 CAZymes of which 26 were significantly enriched in its secretome. Functional assays demonstrated the presence of CAZyme activity in A. mucolyticum conditioned medium, degradation of human mucin O-glycans, and utilization of liberated non-terminal monosaccharides for bacterial growth. The results support a model in which sialidases and fucosidases remove terminal O-glycan sugars enabling subsequent degradation and utilization of carbohydrates for A. mucolyticum growth. A. mucolyticum CAZyme secretion may thus facilitate bacterial colonization and degradation of the mucus layer and may pose an interesting target for future therapeutic intervention

    Cerebellar function and ischemic brain lesions in migraine patients from the general population

    No full text
    Objective The objective of this article is to obtain detailed quantitative assessment of cerebellar function and structure in unselected migraine patients and controls from the general population. Methods A total of 282 clinically well-defined participants (migraine with aura n = 111; migraine without aura n = 89; non-migraine controls n = 82; age range 43-72; 72% female) from a population-based study were subjected to a range of sensitive and validated cerebellar tests that cover functions of all main parts of the cerebellar cortex, including cerebrocerebellum, spinocerebellum, and vestibulocerebellum. In addition, all participants underwent magnetic resonance imaging (MRI) of the brain to screen for cerebellar lesions. As a positive control, the same cerebellar tests were conducted in 13 patients with familial hemiplegic migraine type 1 (FHM1; age range 19-64; 69% female) all carrying a CACNA1A mutation known to affect cerebellar function. Results MRI revealed cerebellar ischemic lesions in 17/196 (8.5%) migraine patients and 3/79 (4%) controls, which were always located in the posterior lobe except for one control. With regard to the cerebellar tests, there were no differences between migraine patients with aura, migraine patients without aura, and controls for the: (i) Purdue-pegboard test for fine motor skills (assembly scores p = 0.1); (ii) block-design test for visuospatial ability (mean scaled scores p = 0.2); (iii) prism-adaptation task for limb learning (shift scores p = 0.8); (iv) eyeblink-conditioning task for learning-dependent timing (peak-time p = 0.1); and (v) body-sway test for balance capabilities (pitch velocity score under two-legs stance condition p = 0.5). Among migraine patients, those with cerebellar ischaemic lesions performed worse than those without lesions on the assembly scores of the pegboard task (p < 0.005), but not on the primary outcome measures of the other tasks. Compared with controls and non-hemiplegic migraine patients, FHM1 patients showed substantially more deficits on all primary outcomes, including Purdue-peg assembly (p < 0.05), block-design scaled score (p < 0.001), shift in prism-adaptation (p < 0.001), peak-time of conditioned eyeblink responses (p < 0.05) and pitch-velocity score during stance-sway test (p < 0.001). Conclusions Unselected migraine patients from the general population show normal cerebellar functions despite having increased prevalence of ischaemic lesions in the cerebellar posterior lobe. Except for an impaired pegboard test revealing deficits in fine motor skills, these lesions appear to have little functional impact. In contrast, all cerebellar functions were significantly impaired in participants with FHM1
    corecore