90 research outputs found

    Validation of a Persian version of the OIDP index

    Get PDF
    BACKGROUND: Measuring the impacts of oral conditions on quality of life is an important part of oral health needs assessment. For this purpose a variety of oral health-related quality of life instruments have been developed. To use a scale in a new context or with a different groups of people, it is necessary to re-establish its psychometric properties. The objectives of this study are to develop and test the reliability and validity of the Persian version of Oral Impacts on Daily Performances (OIDP) index. METHODS: The Persian version of OIDP index was developed through a linguistic translation exercise. The psychometric properties of the Persian version of OIDP were evaluated in terms of face, content, construct and criterion validity in addition to internal and test-retest reliability. A convenience sample of 285 working adults aged 20–50 living in Mashad was recruited (91% response rate) to evaluate the Persian version. RESULTS: The Persian version of OIDP had excellent validity and reliability charactersitics. Weighted Kappa was 0.91. Cronbachs alpha coefficient was 0.79. The index showed significant associations with self-rated oral and general health status, as well as perceived dental treatment needs, satisfaction with mouth and prevalence of pain in mouth (P < 0.001). 64.9% of subjects had an oral impact on their daily performances. The most prevalent performance affected was eating, followed by major work or role and sleeping. CONCLUSION: The Persian version of OIDP index is a valid and reliable measure for use in 20 to 50 year old working Iranians

    Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Get PDF
    Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (α-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III)-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition

    GRB 201015A and the nature of low-luminosity soft gamma-ray bursts

    Get PDF
    GRB 201015A is a peculiarly low luminosity, spectrally soft gamma-ray burst (GRB), with T90 = 9.8 ± 3.5 s (time interval of detection of 90 % of photons from the GRB), and an associated supernova (likely to be type Ic or Ic-BL). GRB 201015A has an isotropic energy Eγ,isoE_{\gamma , \rm iso}=1.750.53+0.60×1050= 1.75 ^{+0.60} _{-0.53} \times 10^{50} erg, and photon index Γ=3.000.42+0.50\Gamma = 3.00 ^{+0.50} _{-0.42} (15–150 keV). It follows the Amati relation, a correlation between Eγ,isoE_{\gamma , \rm iso} and spectral peak energy Ep followed by long GRBs. It appears exceptionally soft based on Γ, the hardness ratio of HR = 0.47 ± 0.24, and low-Ep, so we have compared it to other GRBs sharing these properties. These events can be explained by shock breakout, poorly collimated jets, and off-axis viewing. Follow-up observations of the afterglow taken in the X-ray, optical, and radio, reveal a surprisingly late flattening in the X-ray from t = (2.61 ± 1.27) × 104 s to t=1.670.65+1.14×106t = 1.67 ^{+1.14} _{-0.65} \times 10^6 s. We fit the data to closure relations describing the synchrotron emission, finding the electron spectral index to be p=2.420.30+0.44p = 2.42 ^{+0.44} _{-0.30}, and evidence of late-time energy injection with coefficient q=0.240.18+0.24q = 0.24 ^{+0.24} _{-0.18}. The jet half opening angle lower limit (θj ≥ 16○) is inferred from the non-detection of a jet break. The launch of SVOM and Einstein Probe in 2023, should enable detection of more low luminosity events like this, providing a fuller picture of the variety of GRBs

    Transient-optimized real-bogus classification with Bayesian convolutional neural networks - sifting the GOTO candidate stream

    Get PDF
    Large-scale sky surveys have played a transformative role in our understanding of astrophysical transients, only made possible by increasingly powerful machine learning-based filtering to accurately sift through the vast quantities of incoming data generated. In this paper, we present a new real-bogus classifier based on a Bayesian convolutional neural network that provides nuanced, uncertainty-aware classification of transient candidates in difference imaging, and demonstrate its application to the datastream from the GOTO wide-field optical survey. Not only are candidates assigned a well-calibrated probability of being real, but also an associated confidence that can be used to prioritize human vetting efforts and inform future model optimization via active learning. To fully realize the potential of this architecture, we present a fully automated training set generation method which requires no human labelling, incorporating a novel data-driven augmentation method to significantly improve the recovery of faint and nuclear transient sources. We achieve competitive classification accuracy (FPR and FNR both below 1 percent) compared against classifiers trained with fully human-labelled data sets, while being significantly quicker and less labour-intensive to build. This data-driven approach is uniquely scalable to the upcoming challenges and data needs of next-generation transient surveys. We make our data generation and model training codes available to the community

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
    corecore