15 research outputs found

    Momentum space imaging of Cooper pairing in a half-Dirac-gas topological superconductor (a helical 2D topological superconductor)

    Full text link
    Superconductivity in Dirac electrons has recently been proposed as a new platform between novel concepts in high-energy and condensed matter physics. It has been proposed that supersymmetry and exotic quasiparticles, both of which remain elusive in particle physics, may be realized as emergent particles in superconducting Dirac electron systems. Using artificially fabricated topological insulator-superconductor heterostructures, we present direct spectroscopic evidence for the existence of Cooper pairing in a half Dirac gas 2D topological superconductor. Our studies reveal that superconductivity in a helical Dirac gas is distinctly different from that of in an ordinary two-dimensional superconductor while considering the spin degrees of freedom of electrons. We further show that the pairing of Dirac electrons can be suppressed by time-reversal symmetry breaking impurities removing the distinction. Our demonstration and momentum-space imaging of Cooper pairing in a half Dirac gas and its magnetic behavior taken together serve as a critically important 2D topological superconductor platform for future testing of novel fundamental physics predictions such as emergent supersymmetry and quantum criticality in topological systems.Comment: Submitted June'14; Accepted to NaturePhysics, to appear AOP (2014

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Anticancer potential of algae-derived metabolites: recent updates and breakthroughs

    No full text
    Abstract Background Cancer is an increasing medical condition that poses a threat to worldwide populations, despite improvements in scientific research. For normal cancer treatment, a variety of chemotherapeutics, radiation, and medications are available; however, recurrent side effects and multi-drug resistance have limited treatment options and harmed our immune system. Marine algae are a promising source of novel components for the development of new complementary and alternative medications with anti-carcinogenic properties. Results In this review, we discussed several breakthrough studies on the anti-carcinogenic effects of several macro- and micro-algal components, demonstrating the inhibition of cancer cell development via multiple mechanisms. These components, often referred to as algal biopolymers, have been demonstrated to exhibit a wide range of chemical compositions and physical properties; as a result, they are used in pharmacological, pharmaceutical, nutraceutical, and microbiological applications in different sectors. Moreover, treatment of antimicrobial-resistant Helicobacter pylori infection-derived gastric cancer prevention may benefit from the use of algae in addition to standard antibiotics. Additionally, in recent years, it has been shown that algae have incredibly promising low-cost biomedical potentials as therapeutic applications for the treatment of cancer. Conclusion In recent years, several preclinical studies with the algal bioactive components in the field of novel drug discovery substituting synthetic drugs have been conducted. To demonstrate their potential anticancer actions on various cancerous signaling pathways and consequently reduce cancer, the enormous plasticity of these algae biopolymers has been intensively explored

    Efficacy of erlotinib as first-line maintenance therapy in patients with locally advanced or metastatic nonsmall cell lung cancer who have not experienced disease progression or unacceptable toxicity during chemotherapy

    No full text
    Background: First-line maintenance with erlotinib in nonsmall cell lung cancer (NSCLC) patients without progression after four cycles of chemotherapy was well tolerated and significantly prolonged progression-free survival (PFS) compared with placebo. Aim and Design: This open-label, single arm, Phase IV, interventional study was designed to evaluate erlotinib as first-line maintenance after chemotherapy in Indian NSCLC patients. Primary efficacy objective was to evaluate PFS rate (PFSR) at week 52 and secondary objectives were determination of PFS, overall survival (OS), overall response rate (ORR), disease control rate, and safety. Subjects and Methods: Patients were treated with erlotinib until disease progression/death/unacceptable toxicity or end of study. Patients with disease progression underwent scheduled clinical assessments every 12 weeks thereafter. Kaplan–Meier estimates were used to evaluate PFSR, PFS, and OS. The ORR was summarized using number and percentage along with two-sided 95% Clopper–Pearson confidence interval. The incidence of adverse events (AEs) and serious AEs (SAEs) was tabulated according to severity, outcome, and relationship to erlotinib. Results: Of the 51 enrolled patients, 47 patients completed the study (2: Continuing treatment, 41: Disease progression, and 4: Death) and four patients discontinued treatment (3: Lost to follow-up; 1: Withdrew consent). PFSR was 22.5% at 12 months, median PFS 99 days (14.14 weeks), and median OS was 671 days (22 months). The probability of OS was 74.5% at 14 months. The ORR was 25.5%, and disease control rate was 55.3%. AEs were reported in 62.7% and SAE in 7.8% of patients. Common AEs were diarrhea and rash. Conclusions: Erlotinib was well tolerated by Indian patients in first-line maintenance setting and resulted in median PFS of 14 weeks and median OS of 22 months better than previously reported and with no new safety concerns in this population

    A new photoluminescent Cu<SUP>I</SUP><SUB>2</SUB>N<SUB>6</SUB> chromophore

    No full text
    A novel CuI2N6 chromophore has been isolated with 2,2'-bis[(4R)-phenyl]-1,3-oxazoline (L) in the optically pure triple-stranded helicate [Cu2L3](ClO4)2, which displays photoluminescence in methanol at room temperature (emission maximum λem = 385 nm; quantum yield Φ = 1.6 x 10-4; lifetime τ ≈ 2 ns) as well as at 77 K (λem = 430 nm; τ = 0.89 ± 0.13 s)
    corecore