87 research outputs found

    Computational analyses of eukaryotic promoters

    Get PDF
    Computational analysis of eukaryotic promoters is one of the most difficult problems in computational genomics and is essential for understanding gene expression profiles and reverse-engineering gene regulation network circuits. Here I give a basic introduction of the problem and recent update on both experimental and computational approaches. More details may be found in the extended references. This review is based on a summer lecture given at Max Planck Institute at Berlin in 2005

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Measurement of b hadron lifetimes in exclusive decays containing a J/psi in p-pbar collisions at sqrt(s)=1.96TeV

    Get PDF
    We report on a measurement of bb-hadron lifetimes in the fully reconstructed decay modes B^+ -->J/Psi K+, B^0 --> J/Psi K*, B^0 --> J/Psi Ks, and Lambda_b --> J/Psi Lambda using data corresponding to an integrated luminosity of 4.3 fb1{\rm fb}^{-1}, collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are τ\tauB^+ = 1.639±0.009(stat)±0.009(syst) ps1.639 \pm 0.009 ({\rm stat}) \pm 0.009 {\rm (syst) ~ ps}, τ\tauB^0 = 1.507±0.010(stat)±0.008(syst) ps1.507 \pm 0.010 ({\rm stat}) \pm 0.008 {\rm (syst) ~ ps} and τ\tauLambda_b = 1.537±0.045(stat)±0.014(syst) ps1.537 \pm 0.045 ({\rm stat}) \pm 0.014 {\rm (syst) ~ ps}. The lifetime ratios are τ\tauB^+/τ\tauB^0 = 1.088±0.009(stat)±0.004(syst)1.088 \pm 0.009 ({\rm stat})\pm 0.004 ({\rm syst}) and τ\tauLambda_b/τ\tauB^0 = 1.020±0.030(stat)±0.008(syst)1.020 \pm 0.030 ({\rm stat})\pm 0.008 ({\rm syst}). These are the most precise determinations of these quantities from a single experiment.Comment: revised version. accepted for PRL publicatio

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see also the public announcement at http://www.ligo.org/science/Publication-S6BurstAllSky

    Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    Get PDF
    ELC was supported while writing this paper by a EU Horizon 2020 Marie Slodowska Curie Fellowship, project BEHAVIOUR-CONNECT, by a Newton Fellowship from the Royal Society of London and Bayesian statistical training was supported by National Science Foundation (award DEB- 1145200). Laboratory analyses conducted by ELC were funded by a small grant from the British Ecological Society 5076 / 6118 and Bayesian analysis was supported by training from the National Science Foundation under Grant No. DEB-1145200. OEG was supported by the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Founding Council (grant reference HR09011). Genetic data from the South African right whale samples were generated by MB and PJP with the support of UC Berkeley, University of Stockholm and University of Groningen. Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit which is funded by a Wellcome Trust ISSF award.Understanding how dispersal and gene flow link geographically separated populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n=1,327) and nuclear markers (17 microsatellite loci, n=222) from major wintering grounds to investigate circumpolar population structure, historical demography, and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approach with microsatellite markers compared scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modeling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesis that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such oceanographic changes. These findings highlight the application of ABC approaches to infer connectivity in mobile species with complex population histories and currently low levels of differentiation.PostprintPeer reviewe

    Search for High Mass Resonances Decaying to Muon Pairs in root s=1.96 TeV p(p)over-bar Collisions

    Get PDF
    We present a search for a new narrow, spin-1, high mass resonance decaying to mu(+)mu(-) + X, using a matrix-element-based likelihood and a simultaneous measurement of the resonance mass and production rate. In data with 4.6 fb(-1) of integrated luminosity collected by the CDF detector in p (p) over bar collisions at root s = 1960 GeV, the most likely signal cross section is consistent with zero at 16% confidence level. We therefore do not observe evidence for a high mass resonance and place limits on models predicting spin-1 resonances, including M > 1071 GeV/c(2) at 95% confidence level for a Z' boson with the same couplings to fermions as the Z boson

    Measurement of b Hadron Lifetimes in Exclusive Decays Containing a J/Psi in p(p)over-bar Collisions at root s=1.96 TeV

    Get PDF
    We report on a measurement of b-hadron lifetimes in the fully reconstructed decay modes B+-> J/psi K+, B-0 -> J/psi K*(892)(0), B-0 -> J/psi K-s(0), and Lambda(0)(b)-> J/psi Lambda(0) using data corresponding to an integrated luminosity of 4.3 fb(-1), collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are tau(B+)=[1.639 +/- 0.009(stat)+/- 0.009(syst)]ps, tau(B-0)=[1.507 +/- 0.010(stat)+/- 0.008(syst)]ps, and tau(Lambda(0)(b))=[1.537 +/- 0.045(stat)+/- 0.014(syst)]ps. The lifetime ratios are tau(B+)/tau(B-0)=[1.088 +/- 0.009(stat)+/- 0.004(syst)] and tau(Lambda(0)(b))/tau(B-0)=[1.020 +/- 0.030(stat)+/- 0.008(syst)]. These are the most precise determinations of these quantities from a single experiment

    Binary Black Hole Mergers in the first Advanced LIGO Observing Run

    Get PDF
    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M100 M_\odot and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ5\sigma over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9240Gpc3yr19-240 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections

    Observation of Gravitational Waves from a Binary Black Hole Merger

    Get PDF
    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410þ160 −180 Mpc corresponding to a redshift z ¼ 0.09þ0.03 −0.04 . In the source frame, the initial black hole masses are 36þ5 −4M⊙ and 29þ4 −4M⊙, and the final black hole mass is 62þ4 −4M⊙, with 3.0þ0.5 −0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger
    corecore