113 research outputs found

    Photon statistics of a random laser

    Get PDF
    A general relationship is presented between the statistics of thermal radiation from a random medium and its scattering matrix S. Familiar results for black-body radiation are recovered in the limit S to 0. The mean photocount is proportional to the trace of 1-SS^dagger, in accordance with Kirchhoff's law relating emissivity and absorptivity. Higher moments of the photocount distribution are related to traces of powers of 1-SS^dagger, a generalization of Kirchhoff's law. The theory can be applied to a random amplifying medium (or "random laser") below the laser threshold, by evaluating the Bose-Einstein function at a negative temperature. Anomalously large fluctuations are predicted in the photocount upon approaching the laser threshold, as a consequence of overlapping cavity modes with a broad distribution of spectral widths.Comment: 26 pages, including 9 figure

    Infectious disease management in primary care: perceptions of GPs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is important to keep the level of antibiotic prescribing low to contain the development of resistant bacteria. This study was conducted to reveal new knowledge about how GPs think in relation to the prescribing of antibiotics - knowledge that could be used in efforts toward rational treatment of infectious diseases in primary care. The aim was to explore and describe the variations in GPs' perceptions of infectious disease management, with special reference to antibiotic prescribing.</p> <p>Methods</p> <p>Twenty GPs working at primary care centres in a county in south-west Sweden were purposively selected based on the strategy of including GPs with different kinds of experience. The GPs were interviewed and perceptions among GPs were analysed by a phenomenographic approach.</p> <p>Results</p> <p>Five qualitatively different perceptions of infectious disease management were identified. They were: (A) the GP must help the patient to achieve health and well-being; (B) the management must meet the GP's perceived personal, professional and organisational demands; (C) restrictive antibiotic prescribing is time-consuming; (D) restrictive antibiotic prescribing can protect the effectiveness of antibiotics; and (E) patients benefit personally from restrictive antibiotic prescribing.</p> <p>Conclusions</p> <p>Restrictive antibiotic prescribing was considered important in two perceptions, was not an issue as such in two others, and was considered in one perception although the actual prescribing was greatly influenced by the interaction between patient and GP. Accordingly, to encourage restrictive antibiotic prescribing several aspects must be addressed. Furthermore, different GPs need various kinds of support. Infectious disease management in primary care is complex and time-consuming, which must be acknowledged in healthcare organisation and planning.</p

    Evaluation of a web-based intervention to reduce antibiotic prescribing for LRTI in six European countries: quantitative process analysis of the GRACE/INTRO randomised controlled trial.

    Get PDF
    To reduce the spread of antibiotic resistance, there is a pressing need for worldwide implementation of effective interventions to promote more prudent prescribing of antibiotics for acute LRTI. This study is a process analysis of the GRACE/INTRO trial of a multifactorial intervention that reduced antibiotic prescribing for acute LRTI in six European countries. The aim was to understand how the interventions were implemented and to examine effects of the interventions on general practitioners' (GPs') and patients' attitudes

    Interventions to Influence Consulting and Antibiotic Use for Acute Respiratory Tract Infections in Children: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Respiratory tract infections (RTIs) are common in children and generally self-limiting, yet often result in consultations to primary care. Frequent consultations divert resources from care for potentially more serious conditions and increase the opportunity for antibiotic overuse. Overuse of antibiotics is associated with adverse effects and antimicrobial resistance, and has been shown to influence how patients seek care in ensuing illness episodes. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a systematic review and meta-analysis to assess the effectiveness of interventions directed towards parents or caregivers which were designed to influence consulting and antibiotic use for respiratory tract infections (RTIs) in children in primary care. Main outcomes were parental consulting rate, parental knowledge, and proportion of children subsequently consuming antibiotics. Of 5,714 references, 23 studies (representing 20 interventions) met inclusion criteria. Materials designed to engage children in addition to parents were effective in modifying parental knowledge and behaviour, resulting in reductions in consulting rates ranging from 13 to 40%. Providing parents with delayed prescriptions significantly decreased reported antibiotic use (Risk Ratio (RR) 0.46 (0.40, 0.54); moreover, a delayed or no prescribing approach did not diminish parental satisfaction. CONCLUSIONS: IN ORDER TO BE MOST EFFECTIVE, INTERVENTIONS TO INFLUENCE PARENTAL CONSULTING AND ANTIBIOTIC USE SHOULD: engage children, occur prior to an illness episode, employ delayed prescribing, and provide guidance on specific symptoms. These results support the wider implementation of interventions to reduce inappropriate antibiotic use in children

    Peptide Ligands Incorporated into the Threefold Spike Capsid Domain to Re-Direct Gene Transduction of AAV8 and AAV9 In Vivo

    Get PDF
    Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore