99 research outputs found
Asteroseismic estimate of helium abundance of a solar analog binary system
16 Cyg A and B are among the brightest stars observed by Kepler. What makes
these stars more interesting is that they are solar analogs. 16 Cyg A and B
exhibit solar-like oscillations. In this work we use oscillation frequencies
obtained using 2.5 years of Kepler data to determine the current helium
abundance of these stars. For this we use the fact that the helium ionization
zone leaves a signature on the oscillation frequencies and that this signature
can be calibrated to determine the helium abundance of that layer. By
calibrating the signature of the helium ionization zone against models of known
helium abundance, the helium abundance in the envelope of 16 Cyg A is found to
lie in the range 0.231 to 0.251 and that of 16 Cyg B lies in the range 0.218 to
0.266.Comment: Accepted for publication in Ap
Solar-like oscillations in the G2 subgiant beta Hydri from dual-site observations
We have observed oscillations in the nearby G2 subgiant star beta Hyi using
high-precision velocity observations obtained over more than a week with the
HARPS and UCLES spectrographs. The oscillation frequencies show a regular comb
structure, as expected for solar-like oscillations, but with several l=1 modes
being strongly affected by avoided crossings. The data, combined with those we
obtained five years earlier, allow us to identify 28 oscillation modes. By
scaling the large frequency separation from the Sun, we measure the mean
density of beta Hyi to an accuracy of 0.6%. The amplitudes of the oscillations
are about 2.5 times solar and the mode lifetime is 2.3 d. A detailed comparison
of the mixed l=1 modes with theoretical models should allow a precise estimate
of the age of the star.Comment: 13 pages, 14 figures, accepted by ApJ. Fixed minor typo (ref to Fig
14
Phylogeographic pattern and extensive mitochondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata.
ABSTARCT: Previous studies have shown that "bioequivalent" generic products of vancomycin are less effective in vivo against Staphylococcus aureus than the innovator compound. Considering that suboptimal bactericidal effect has been associated with emergence of resistance, we aimed to assess in vivo the impact of exposure to innovator and generic products of vancomycin on S. aureus susceptibility. A clinical methicillin-resistant S. aureus (MRSA) strain from a liver transplant patient with persistent bacteremia was used for which MIC, minimum bactericidal concentration (MBC), and autolytic properties were determined. Susceptibility was also assessed by determining a population analysis profile (PAP) with vancomycin concentrations from 0 to 5 mg/liter. ICR neutropenic mice were inoculated in each thigh with ∼7.0 log(10) CFU. Treatment with the different vancomycin products (innovator and three generics; 1,200 mg/kg of body weight/day every 3 h) started 2 h later while the control group received sterile saline. After 24 h, mice were euthanized, and the thigh homogenates were plated. Recovered colonies were reinoculated to new groups of animals, and the exposure-recovery process was repeated until 12 cycles were completed. The evolution of resistance was assessed by PAP after cycles 5, 10, 11, and 12. The initial isolate displayed reduced autolysis and higher resistance frequencies than S. aureus ATCC 29213 but without vancomycin-intermediate S. aureus (VISA) subpopulations. After 12 cycles, innovator vancomycin had significantly reduced resistant subpopulations at 1, 2, and 3 mg/liter, while the generic products had enriched them progressively by orders of magnitude. The great capacity of generic vancomycin to select for less susceptible organisms raises concerns about the role of therapeutic inequivalence of any antimicrobial on the epidemiology of resistance worldwide
Kepler-21b: A 1.6REarth Planet Transiting the Bright Oscillating F Subgiant Star HD 179070
We present Kepler observations of the bright (V=8.3), oscillating star HD
179070. The observations show transit-like events which reveal that the star is
orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD
179070 using short cadence Kepler observations show that HD 179070 has a
frequencypower spectrum consistent with solar-like oscillations that are
acoustic p-modes. Asteroseismic analysis provides robust values for the mass
and radius of HD 179070, 1.34{\pm}0.06 M{\circ} and 1.86{\pm}0.04 R{\circ}
respectively, as well as yielding an age of 2.84{\pm}0.34 Gyr for this F5
subgiant. Together with ground-based follow-up observations, analysis of the
Kepler light curves and image data, and blend scenario models, we
conservatively show at the >99.7% confidence level (3{\sigma}) that the transit
event is caused by a 1.64{\pm}0.04 R_Earth exoplanet in a 2.785755{\pm}0.000032
day orbit. The exoplanet is only 0.04 AU away from the star and our
spectroscopic observations provide an upper limit to its mass of ~10 M_Earth
(2-{\sigma}). HD 179070 is the brightest exoplanet host star yet discovered by
Kepler.Comment: Accepted to Ap
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study
Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk
Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses
The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species
ESPRESSO at VLT. On-sky performance and first results
Context. ESPRESSO is the new high-resolution spectrograph of ESO's Very Large Telescope (VLT). It was designed for ultra-high radial-velocity (RV) precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UTs) of the VLT at a spectral resolving power of 140 000 or 190 000 over the 378.2 to 788.7 nm wavelength range; it can also observe with all four UTs together, turning the VLT into a 16 m diameter equivalent telescope in terms of collecting area while still providing a resolving power of 70 000. Aims: We provide a general description of the ESPRESSO instrument, report on its on-sky performance, and present our Guaranteed Time Observation (GTO) program along with its first results. Methods: ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1, 2018, but improvements to the instrument and recommissioning runs were conducted until July 2019. Results: The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65″ exceeds the 10% mark under nominal astroclimatic conditions. We demonstrate an RV precision of better than 25 cm s-1 during a single night and 50 cm s-1 over several months. These values being limited by photon noise and stellar jitter shows that the performance is compatible with an instrumental precision of 10 cm s-1. No difference has been measured across the UTs, neither in throughput nor RV precision. Conclusions: The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterization, and many other fields. Based on GTOs collected at the European Southern Observatory under ESO program(s) 1102.C-0744, 1102.C-0958 and 1104.C-0350 by the ESPRESSO Consortium
The Gaia mission
Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai
Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite
Since the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky—providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%-10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data
- …