41 research outputs found

    Герменевтика моралі у становленні ідеї права: проекції Старого Завіту і християнства

    Get PDF
    У статті розглядається проблема становлення ідеї права в контексті іудео-християнської традиції світосприйняття: аналізується конкретизація постанов іудаїзму і християнства в сфері морально-етичного комплексу, з'ясовуються домінанти його змістовного наповнення відповідно до процесу осмислення ідеї права. Розглядається символізм текстів Старого й Нового Завітів, що породжує різноакцентованість у полі їх тлумачення та площині взаємозв'язку розуміння соціального призначення моралі і права. Розмежування моралі й права простежується на основі процесу розрізнення понять «гріха» і «злочину», але фіксується як на право покладається завдання інтерпретації, формалізації й закріплення всієї системи вимог етичного характеру з їх подальшою конкретизацією в законі.В статье рассматривается проблема становления идеи права в контексте иудео-христианской традиции мировос-приятия: анализируется конкретизация постановлений иудаизма и христианства в сфере морально-этического комплекса, выясняются доминанты его смыслового наполнения соответственно процессу осмысления идеи права. Рассматривается символизм текстов Старого и Нового Заветов, который порождает разноакцентированность в поле их тол-кования и плоскости взаимосвязи понимания социального назначения морали и права. Размежевание морали и права прослеживается на основе процесса различения понятий «греха» и «преступления», но фиксируется как на право возлагается задание интерпретации, формализации и закрепления всей системы требований этического характера с их дальнейшей конкретизацией в законе.The authors of this article views problem of forming the idea of law within the meaning of Jewish-Christian tradition. In this research analysed the concretisation of Jewish and Christian postulates at the area of moral and ethics complex. Dominants of contextual substanse is determined according to the passes of interpretation the idea of law. Underlines the symbolism of texts of Old and New Testament, which generates heterogeneous interpreting and field correlation in understanding of social appointment of moral and law. Delimitation of moral and law follows the process of delimitation conceptions «the sin» and «the crime». At the end the author made the conclusion that law has function to interpretation, formalization and fixing by the the forse of state, whole system of requirements of ethics, their further concretisation in law

    Proteome analysis of yeast response to various nutrient limitations

    Get PDF
    We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and (15)N metabolically labeled yeast cultures. A total of 928 proteins covering a wide range of isoelectric points, molecular weights and subcellular localizations were identified. Stringent statistical analysis identified 51 proteins upregulated in response to glucose limitation and 51 upregulated in response to ammonia limitation. Under glucose limitation, typical glucose-repressed genes encoding proteins involved in alternative carbon source utilization, fatty acids β-oxidation and oxidative phosphorylation displayed an increased protein level. Proteins upregulated in response to nitrogen limitation were mostly involved in scavenging of alternative nitrogen sources and protein degradation. Comparison of transcript and protein levels clearly showed that upregulation in response to glucose limitation was mainly transcriptionally controlled, whereas upregulation in response to nitrogen limitation was essentially controlled at the post-transcriptional level by increased translational efficiency and/or decreased protein degradation. These observations underline the need for multilevel analysis in yeast systems biology

    Protein-Tyrosine Kinase Activity Profiling in Knock Down Zebrafish Embryos

    Get PDF
    BACKGROUND: Protein-tyrosine kinases (PTKs) regulate virtually all biological processes. PTKs phosphorylate substrates in a sequence-specific manner and relatively short peptide sequences determine selectivity. Here, we developed new technology to determine PTK activity profiles using peptide arrays. The zebrafish is an excellent model system to investigate signaling in the whole organism, given its wealth of genetic tools, including morpholino-mediated knock down technology. We used zebrafish embryo lysates to determine PTK activity profiles, thus providing the unique opportunity to directly compare the effect of protein knock downs on PTK activity profiles on the one hand and phenotypic changes on the other. METHODOLOGY: We used multiplex arrays of 144 distinct peptides, spotted on a porous substrate, allowing the sample to be pumped up and down, optimizing reaction kinetics. Kinase reactions were performed using complex zebrafish embryo lysates or purified kinases. Peptide phosphorylation was detected by fluorescent anti-phosphotyrosine antibody binding and the porous chips allowed semi-continuous recording of the signal. We used morpholinos to knock down protein expression in the zebrafish embryos and subsequently, we determined the effects on the PTK activity profiles. RESULTS AND CONCLUSION: Reproducible PTK activity profiles were derived from one-day-old zebrafiish embryos. Morpholino-mediated knock downs of the Src family kinases, Fyn and Yes, induced characteristic phenotypes and distinct changes in the PTK activity profiles. Interestingly, the peptide substrates that were less phosphorylated upon Fyn and Yes knock down were preferential substrates of purified Fyn and Yes. Previously, we demonstrated that Wnt11 knock down phenocopied Fyn/Yes knock down. Interestingly, Wnt11 knock down induced similar changes in the PTK activity profile as Fyn/Yes knock down. The control Nacre/Mitfa knock down did not affect the PTK activity profile significantly. Our results indicate that the novel peptide chip technology can be used to unravel kinase signaling pathways in vivo

    Interactions of Kid–Kis toxin–antitoxin complexes with the parD operator-promoter region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid–Kis oligomers

    Get PDF
    The parD operon of Escherichia coli plasmid R1 encodes a toxin–antitoxin system, which is involved in plasmid stabilization. The toxin Kid inhibits cell growth by RNA degradation and its action is neutralized by the formation of a tight complex with the antitoxin Kis. A fascinating but poorly understood aspect of the kid–kis system is its autoregulation at the transcriptional level. Using macromolecular (tandem) mass spectrometry and DNA binding assays, we here demonstrate that Kis pilots the interaction of the Kid–Kis complex in the parD regulatory region and that two discrete Kis-binding regions are present on parD. The data clearly show that only when the Kis concentration equals or exceeds the Kid concentration a strong cooperative effect exists between strong DNA binding and Kid(2)–Kis(2)–Kid(2)–Kis(2) complex formation. We propose a model in which transcriptional repression of the parD operon is tuned by the relative molar ratio of the antitoxin and toxin proteins in solution. When the concentration of the toxin exceeds that of the antitoxin tight Kid(2)–Kis(2)–Kid(2) complexes are formed, which only neutralize the lethal activity of Kid. Upon increasing the Kis concentration, (Kid(2)–Kis(2))(n) complexes repress the kid–kis operon

    Direct Mass Spectrometry-Based Detection and Antibody Sequencing of Monoclonal Gammopathy of Undetermined Significance from Patient Serum: A Case Study

    Get PDF
    Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases

    Direct Mass Spectrometry-Based Detection and Antibody Sequencing of Monoclonal Gammopathy of Undetermined Significance from Patient Serum: A Case Study

    Get PDF
    Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases

    Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The addition of an acetyl group to protein N-termini is a widespread co-translational modification. NatB is one of the main N-acetyltransferases that targets a subset of proteins possessing an N-terminal methionine, but so far only a handful of substrates have been reported. Using a yeast <it>nat3Δ </it>strain, deficient for the catalytic subunit of NatB, we employed a quantitative proteomics strategy to identify NatB substrates and to characterize downstream effects in <it>nat3Δ</it>.</p> <p>Results</p> <p>Comparing by proteomics WT and <it>nat3Δ </it>strains, using metabolic <sup>15</sup>N isotope labeling, we confidently identified 59 NatB substrates, out of a total of 756 detected acetylated protein N-termini. We acquired in-depth proteome wide measurements of expression levels of about 2580 proteins. Most remarkably, NatB deletion led to a very significant change in protein phosphorylation.</p> <p>Conclusions</p> <p>Protein expression levels change only marginally in between WT and <it>nat3Δ</it>. A comparison of the detected NatB substrates with their orthologous revealed remarkably little conservation throughout the phylogenetic tree. We further present evidence of post-translational N-acetylation on protein variants at non-annotated N-termini. Moreover, analysis of downstream effects in <it>nat3Δ </it>revealed elevated protein phosphorylation levels whereby the kinase Snf1p is likely a key element in this process.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum

    No full text
    The accumulation of cellular damage, including DNA damage, is hypothesized to contribute to aging-related neurodegenerative changes. DNA excision repair cross-complementing group 1 (Ercc1) knock-out mice represent an accepted model of neuronal aging, showing gradual neurodegenerative changes, including loss of synaptic contacts and cell body shrinkage. Here, we used the Purkinje cell-specific Ercc1 DNA-repair knockout mouse model to study aging in the mouse cerebellum. We performed an in-depth quantitative proteomics analysis, using stable isotope dimethyl labeling, to decipher changes in protein expression between the early (8 weeks), intermediate (16 weeks), and late (26 weeks) stages of the phenotypically aging Ercc1 knock-out and healthy littermate control mice. The expression of over 5,200 proteins from the cerebellum was compared quantitatively, whereby 79 proteins ( i.e. 1.5%) were found to be substantially regulated during aging. Nearly all of these molecular markers of the early aging onset belonged to a strongly interconnected network involved in excitatory synaptic signaling. Using immunohistological staining, we obtained temporal and spatial profiles of these markers confirming not only the proteomics data but in addition revealed how the change in protein expression correlates to synaptic changes in the cerebellum. In summary, this study provides a highly comprehensive spatial and temporal view of the dynamic changes in the cerebellum and Purkinje cell signaling in particular, indicating that synapse signaling is one of the first processes to be affected in this premature aging model, leading to neuron morphological changes, neuron degeneration, inflammation, and ultimately behavior disorders
    corecore