1,182 research outputs found

    Present Effects of Past Wildfires on Leaf Litter Breakdown in Stream Ecosystems

    Get PDF
    We investigated the present effects from a 10-year-old wildfire on leaf litter breakdown rates in 3 headwater streams in central Idaho. These systems experienced a massive debris flow one year after the fire. Based on soil instability and burn patterns, we identified 3 stream conditions: unburned, burned only, and burned/scoured. We placed leaf bags containing willow leaves (Salix sp.) in each stream type and removed bags at various time intervals until all bags were collected 100 days after their introduction. Leaf material was dried and weighed, and decay rate coefficients were calculated. Macroinvertebrates colonizing the bags were enumerated and identified, and selected taxa were placed into trophic groups. We found that the unburned stream had the fastest leaf litter breakdown rate, the lowest level of incident light reaching the stream, and the largest amount of benthic organic matter. The burned/scoured stream was nearly opposite in all respects. Numbers of 2 detritivore invertebrate taxa, Serratella tibialis and Zapada oregonensis, were highest in the unburned stream but lowest in the burned/scoured stream. A third taxon, Baetis sp., showed the opposite relationship. Presence of predatory invertebrates did not affect detritivore abundance or leaf decay rate in the bags. Our research suggests that recovery response variables of some stream systems may not have returned to prefire levels even a decade after the initial wildfire. In this study, the recovery of our streams appears to be connected to the return of the riparian zone, though fire-induced debris flows may slow or alter final recovery of the stream system

    Globular cluster system and Milky Way properties revisited

    Get PDF
    Updated data of the 153 Galactic globular clusters are used to readdress fundamental parameters of the Milky Way. We build a reduced sample, decontaminated of the clusters younger than 10Gyr, those with retrograde orbits and/or evidence of relation to dwarf galaxies. The 33 metal-rich globular clusters of the reduced sample extend basically to the Solar circle and distribute over a region with projected axial-ratios typical of an oblate spheroidal, Δx:Δy:Δz1.0:0.9:0.4\rm\Delta x:\Delta y:\Delta z\approx1.0:0.9:0.4. The 81 metal-poor globular clusters span a nearly spherical region of axial-ratios 1.0:1.0:0.8\approx1.0:1.0:0.8 extending from the central parts to the outer halo. A new estimate of the Sun's distance to the Galactic center is provided, RO=7.2±0.3kpc\rm R_O=7.2\pm0.3 kpc. The metal-rich and metal-poor radial-density distributions flatten for RGC2kpc\rm R_{GC}\leq2 kpc and are well represented both by a power-law with a core-like term and S\'ersic's law; at large distances they fall off as R3.9\rm\sim R^{-3.9}. Both metallicity components appear to have a common origin, which is different from that of the dark matter halo. Structural similarities of the metal-rich and metal-poor radial distributions with the stellar halo are consistent with a scenario where part of the reduced sample was formed in the primordial collapse, and part was accreted in an early period of merging. This applies to the bulge as well, suggesting an early merger affecting the central parts of the Galaxy. We estimate that the present globular cluster population corresponds to 23±6\rm\leq23\pm6% of the original one. The fact that the volume-density radial distributions of the metal-rich and metal-poor globular clusters of the reduced sample follow both a core-like power-law and S\'ersic's law indicates that we are dealing with spheroidal subsystems in all scales.Comment: 14 pages and 6 figures. Astronomy & Astrophysics, accepted on NOv. 2

    Refining the fundamental plane of accreting black holes

    Get PDF
    The idea of a unified description of supermassive and stellar black holes has been supported by the extension of the empirical radio/X-ray correlation from X-ray binaries to active galactic nuclei through the inclusion of a mass term. This has lead to the so-called fundamental plane of black hole activity in the black hole mass, radio and X-ray luminosity space. Two incarnations of this fundamental plane have so far been suggested using different underlying models and using two different samples of accreting black holes. We present revised samples for both studies together with a refined statistical analysis using measured errors of the observables. This method is used to compare the two samples, discuss selection effects, and infer parameters for the fundamental plane in a homogeneous way. We show that strongly sub-Eddington objects in a state equivalent to the low/hard state of X-ray binaries follow the fundamental plane very tightly; the scatter is comparable to the measurement errors. However, we find that the estimated parameters depend strongly on the assumptions made on the sources of scatter and the relative weight of the different AGN classes in the sample. Using only hard state objects, the fundamental plane is in agreement with the prediction of a simple uncooled synchrotron/jet model for the emitted radiation. Inclusion of high-state objects increases the scatter and moves the correlation closer to a disk/jet model. This is qualitatively consistent with a picture where low-state objects are largely dominated by jet emission while high-state objects have a strong contribution from an accretion disk.Comment: Accepted for publication in A&

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
    corecore