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ABSTRACT

Context. The idea of a unified description of supermassive and stellar black holes has been supported by the extension of the empir-
ical radio/X-ray correlation from X-ray binaries to active galactic nuclei through the inclusion of a mass term. This has lead to the
so-called fundamental plane of black hole activity in the black hole mass, radio and X-ray luminosity space. Two incarnations of this
fundamental plane have so far been suggested using different underlying models and using two different samples of accreting black
holes.
Aims. We improve the parameter estimates of the fundamental plane and estimate the scatter of the sources around the plane in both
samples. This is used to look for possible constraints on the proposed theoretical models. Furthermore, we search for selection effects
due to the inclusion of different classes of AGN or distance effects.
Methods. We present revised samples for both studies together with a refined statistical analysis using measured errors of the observ-
ables. This method is used to compare the two samples and infer parameters for the fundamental plane in a homogeneous way.
Results. We show that strongly sub-Eddington objects in a state equivalent to the low/hard state of X-ray binaries follow the funda-
mental plane very tightly; the scatter is comparable to the measurement errors. However, we find that the estimated parameters depend
strongly on the assumptions made on the sources of scatter and the relative weight of the different AGN classes in the sample. Using
only hard state objects, the fundamental plane is in agreement with the prediction of a simple uncooled synchrotron/jet model for the
emitted radiation. Inclusion of high-state objects increases the scatter and moves the correlation closer to a disk/jet model. This is
qualitatively consistent with a picture where low-state objects are largely dominated by jet emission while high-state objects have a
strong contribution from an accretion disk.

Key words. X-rays: binaries – galaxies: active – radiation mechanisms: non-thermal – stars: winds, outflows – black hole physics –
accretion, accretion disks

1. Introduction

Active galactic nuclei (AGN) and black hole X-ray binaries
(XRBs) seem to have a similar central engine consisting of the
central black hole, an accretion disk probably accompanied by a
corona, and a relativistic jet (Shakura & Sunyaev 1973; Mirabel
& Rodríguez 1999; Antonucci 1993). Jet and disk may form a
symbiotic system (Falcke & Biermann 1995; Falcke et al. 1995)
which can be scaled over several orders of magnitude in mass
and accretion rate (Falcke & Biermann 1996, 1999) suggesting
that a single central engine can be used to describe very different
types of black holes.

While the general unification of stellar mass and supermas-
sive black holes picture has now been established for some time,
it has recently been tested on a detailed empirical level by cor-
relations in the radio and X-ray band which have lead to the so-
called fundamental plane of black hole activity (Merloni et al.
2003, hereafter MHDM; and Falcke et al. 2004, hereafter FKM).
Similar unification efforts are also under way analysing and
comparing the variability properties of AGN and XRBs (Uttley
et al. 2002; Markowitz et al. 2003; Körding & Falcke 2004;
Abramowicz et al. 2004).

To establish connections between stellar and supermassive
black holes we have to consider that black hole XRBs can be
found in distinct accretion states. In FKM we suggested that
a number of AGN classes can be identified with correspond-
ing XRB states and based on this proposed a power unification
scheme for AGN and XRBs.

The two most prevalent XRB states are the low/hard state
(LH state) and the high/soft state (HS state, see e.g., McClintock
& Remillard 2006). In the LH state the radio spectrum is always
consistent with coming from a steady jet (Fender 2001), which
can sometimes be directly imaged (Stirling et al. 2001). Once
the source enters the HS state, the radio emission seems to be
quenched (Fender et al. 1999; Corbel et al. 2000). One possible
scenario for the accretion flow of a LH state object is that its in-
ner part is optically thin up to a transition radius, where the flow
turns into a standard thin disk (Esin et al. 1997; Poutanen 1998).
Usually, the X-ray emission of a LH state XRB is modeled us-
ing Comptonization (e.g. Sunyaev & Trümper 1979; Thorne &
Price 1975), however, some models suggest that the compact
jet may contribute to the X-ray emission or even dominate it
(Markoff et al. 2001a; Markoff & Nowak 2004; Homan et al.
2005; Markoff et al. 2005). As the disk fades, the system may
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become “jet-dominated” – meaning that the bulk of the energy
output is in radiation and kinetic energy of the jet (Fender et al.
2003, FKM).

Indeed, Corbel et al. (2000, 2003) found a surprisingly tight
correlation of the radio and X-ray fluxes of the black hole
XRB GX 339−4 in its LH state which can be qualitatively
and quantitatively well understood in the context of jet models
(Markoff et al. 2003). Gallo et al. (2003) showed that this corre-
lation does not only hold for one source but seems to be univer-
sal for all LH state XRBs. It has also been observed that, once an
object enters the high state, the radio emission is quenched and
it drops off the correlation (Fender et al. 1999; Tananbaum et al.
1972; Gallo et al. 2003). It has been suggested by Maccarone
et al. (2003) that a similar effect can be found in AGN.

Radio/X-ray correlations have also been found for AGN,
e.g., by Hardcastle & Worrall (1999) and Canosa et al. (1999).
The final breakthrough came when it was shown possible
to combine these correlations to a fundamental plane in the
radio/X-ray/black hole mass space for XRBs and AGN (MHDM,
FKM). This fundamental plane gives a tight relation between the
radio and X-ray fluxes and the black hole mass, which is valid
for AGN as well as XRBs. Thus, the correlation proves the sim-
ilarity of the central engines of these accreting black holes.

However, there are at least two competing explanations for
the fundamental plane. In the picture of FKM, the radio-through-
X-ray emission for XRBs and the lowest luminosity AGN is
attributed to synchrotron emission from a relativistic jet in the
jet-dominated state (LH). As both components, the radio and
the X-rays, originate from the same source – the jet – one can
expect a tight correlation of both observables. We refer to this
model as the “jet only” model. One would expect the correlation
to break down once a source leaves the radiatively inefficient
accretion flow state and is no longer jet-dominated. Hence, the
picture should not apply for high-state objects.

On the other hand, MHDM suggested that the X-ray emis-
sion originates from the accretion flow, while the radio emission
is still attributed to the relativistic jet. Both, the flow and the jet
are presumed to be strongly coupled so that the radio and X-ray
emission is correlated. Here we will mainly assume the accre-
tion flow to be some variant of an advection-dominated accre-
tion flow (ADAF, Narayan & Yi 1994; see also the convection
dominated accretion flows e.g., Quataert & Gruzinov 2000) and
refer to the model as “ADAF/jet” model. The ADAF solution is
only one possible accretion flow model, e.g. one other possibil-
ity is presented in Haardt & Maraschi (1991). Here we will use
the ADAF/jet model only as the example for possible “disk/jet”
models.

In the recent past, the statistics and slopes of the
radio/X-ray/mass correlations have been used to argue for
and against the synchrotron/jet models (Heinz 2004, MHDM).
Hence, further clarification is urgently needed. Additionally,
Heinz & Merloni (2004) have used the correlation to search for
constrains of the relativistic beaming. However, as we will show
here, all these analyses depend strongly on the statistics of the
samples, the construction of the samples, and the assumptions
on the scatter of the measurements.

In this paper, we therefore investigate the problems of the
parameter estimation of the fundamental plane of black hole ac-
tivity. We will check the assumptions made by previous stud-
ies, and present an improved statistical analysis. We further-
more improve the samples presented by MHDM and FKM. With
our refined parameter estimation method we analyze and com-
pare both samples and investigate selection effects and the in-
trinsic scatter of the correlation. In this light, we discuss if the

fundamental plane can be used to constrain the underlying emis-
sion mechanism as previously suggested. We will use the intrin-
sic scatter to test which classes of AGN belong to the analog of
the LH state XRBs.

In Sect. 2 we discuss our method of parameter estimation, the
improved samples, and discuss observing frequencies. In Sect. 3
we present our results and their implications and present our con-
clusions in Sect. 4.

2. Parameter estimation

We are searching for the parameters of the fundamental plane
for accreting black holes:

log LX = ξR log LR + ξM log M + bX, (1)

where LX is the X-ray luminosity in the observed band and LR
denotes radio luminosity at the observing frequency (νFν), M
is the black hole mass, the ξi are the correlation coefficients,
and bX denotes the constant offset. To simplify the notation we
omit the units in the logarithms. Throughout this paper all lu-
minosities are measured in erg/s, distances in pc and masses in
solar masses. In the notation we follow FKM. To derive the pa-
rameters as given in MHDM set ξRX = 1/ξR and ξRM = ξM/ξR.

The predicted values for the “jet only” model are ξR = 1.38
and ξM = −0.81 (FKM), while the values for the “ADAF/jet”
model are ξR = 1.64 and ξM = −1.3 (MHDM).

2.1. The samples

Here we compare the published correlations by MHDM and
FKM. While both samples are used to extend the radio/X-ray
correlation found in LH state XRBs, they differ in the selec-
tion of sources and which observing frequencies are used for
the X-ray luminosities.

MHDM sample

The MHDM sample is a real radio/X-ray sample, i.e., it directly
uses the measured radio and X-ray fluxes. It contains XRBs
and nearly all types of AGN except obviously beamed sources
like BL Lac objects. The sources were extracted from the lit-
erature under the condition that good mass estimates exist. To
obtain a representative sample the authors selected a similar
number of bright active AGN and less active AGN. The sam-
ple contains low-luminosity AGN (LLAGN), LINERs (low ion-
ization nuclear emission region), Seyferts (type 1 and 2), FR
Radio Galaxies (Fanaroff & Riley 1974) and radio loud and
quiet quasars (Kellermann et al. 1989) and the quiescence flux
of Sgr A∗. Thus, by using this sample one averages over nearly
all types of AGN, whether they belong to the LH state or not.

To avoid dealing with upper limits in the data we exclude
all those limits from the MHDM sample. The overall result of
the fit does not seem to change due to this, as we can repro-
duce the best fit values of MHDM. This sample contains some
XRBs that do not follow the correlation. Cyg X−1 changes its
state frequently (Gallo et al. 2003) and seems to stay always
near the transition luminosity, thus, it will not trace the corre-
lation well. GRS 1915+105 is a rather unique system that seems
to stay in the “canonical” very high state most of its time (Reig
et al. 2003). We therefore exclude that source as well. It is still
open whether LS 5039 is a black hole or a neutron star binary.
Furthermore, its radio spectrum is peculiar for a LH state object
(Ribó et al. 2005). Thus, besides the original sample we will also
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consider the AGN subsample of MHDM and add a subsample of
the Gallo et al. (2003) XRB sample (see below). The quasar sam-
ple contains two very radio loud objects (3C273, PG 1226+023),
while most quasars are radio quiet. To demonstrate the selection
effects we exclude these two sources from the quasar sample
when we consider subsamples of the MHDM sample.

Our sample (KFC sample)

The sample of FKM tries to include only objects in the LH state.
FKM suggest to classify LLAGN, LINER, FR I Radio Galaxies
and BL Lac objects as the analog classes of the LH state in
XRBs. As FKM use a jet model as the basis of their suggested
unification scheme, they try to compare observations at frequen-
cies that originate from synchrotron emission (see the discussion
in Sect. 2.5). They therefore extrapolate optical observations for
FR I Radio Galaxies and BL Lac objects to an equivalent X-ray
flux (for details see FKM). The fluxes of the BL Lac sources
have been deboosted with an average Doppler factor of 7 (FKM).
In the current study we further increase the number of LLAGN
sources by including all sources of the Nagar et al. (2005) sam-
ple with LR < 1038 erg/s for which we found X-ray fluxes in the
literature. We will refer to this augmented sample as the “KFC
sample”1. The FKM LLAGN sample is based on X-ray obser-
vations of the LLAGN sample studied by Terashima & Wilson
(2003). Additionally we use fluxes from the following surveys in
order of preference: The Chandra v3 pipeline (Ptak & Griffiths
2003, www.xassist.org), the XMM serendipitous X-ray sur-
vey (Barcons et al. 2002), and the ROSAT HRI pointed catalog
(ROSAT Scientific Team 2000). Finally, NGC 4258 fluxes were
taken from Young & Wilson (2004). In the KFC sample we only
consider the non-Seyfert galaxies in the Nagar et al. (2005) sam-
ple; the Seyferts of this sample will be discussed separately as,
even though they are of low luminosity, they still may belong to
the supermassive analog of high state XRBs, because their black
hole masses are so low. For Sgr A∗, we include the hard X-ray
flare by Baganoff et al. (2001), as the flare may be due to jet
emission (see e.g., Markoff et al. 2001b). Besides the flare we
also show the result for the quiescent Sgr A∗ flux.

XRB sample

The sample of LH state XRBs is based on the sample of Gallo
et al. (2003). To avoid problems with state transitions we only
include GX 334-9, V404 Cyg, 4U 1543-47, XTE 1118+480,
XTE J1550-564. For all sources we only consider the data if
the source is in the LH state. We excluded GRS 1915+105 and
Cyg X−1 as discussed above. For GX 334−9 (Corbel et al. 2003)
we used the updated X-ray fluxes from Nowak et al. (2005).

2.2. Problems of parameter estimation

The correlation between the radio and X-ray emission has been
discussed for XRBs and AGN before and it has been shown
by partial correlation analysis that the correlation is indeed real
(MHDM, for AGN only see Hardcastle & Worrall 1999). For a
discussion of the well constrained sources Sgr A∗, NGC 4258,
M81 and a XRB sample see Markoff (2005). Thus, we assume
that the correlation exists and only check the parameter estima-
tion process.

1 Despite other associations the reader may have with this abbrevia-
tion, it is simply based on the present authorlist.

To estimate parameters for measured data with errors in all
variables, one has to use the merit function (see e.g., Press 2002,
MHDM). For measurements yi and xi j, which all have uncer-
tainties, e.g., the yi can denote the X-ray luminosities while x1i
denotes the radio luminosities and x2 j the black hole masses, the
merit function is defined as:

χ̂2 =
∑

i

(yi − b −∑ j a jxi j)2

σ2
yi
+
∑

j(a jσxi j)2
, (2)

where the σ are the corresponding uncertainties, and the a j and b
are the unknown parameters. The normal χ2 fits, which do not
consider scatter in all variables, will yield asymmetric results as
for them only scatter in the “y”-axis is considered. The derivative
of the merit function is non-linear in the a j and has to be solved
with a numerical optimization routine. For the parameter b one
can still give an analytical solution:

bmin(a) =

∑
ωi

(
yi − b jxi j

)
∑
ωi

(3)

with ω−1
i = σ2

yi
+
∑

j

(
a jσxi j

)2
. Thus, we only have to solve a

reasonably well behaved two dimensional function for which a
standard numerical optimization routine can be used.

The resulting parameters depend strongly on the assumed
uncertainties σ in the data. MHDM assume that these uncertain-
ties σ are isotropic:

σLR = σLX = σM. (4)

Thus, they do not use measured uncertainties but set them
isotropically to a value such that the reduced χ2 is unity. This
is a strong assumption and its effect has to be checked. As a first
test we explore the effect of an anisotropy of the uncertainties in
the mass estimation and the scatter in the luminosities, while still
assuming that the uncertainties in the LX−LR plane are isotropic:

σLR = σLX = 2ασ0 and σM = 2(1 − α)σ0. (5)

With these assumptions of the uncertainties, we use the merit
function to derive the parameters of the original MHDM sample.
The best fit values are strongly depending on the isotropy param-
eter α as shown in Fig. 1. An anisotropy parameter of 0.5 corre-
sponds to an isotropic distribution of the uncertainties. For this
isotropic case we can reproduce the values found by MHDM,
which are also shown in the figure. α ≈ 1 corresponds to the
case that the uncertainties in the luminosities dominate while for
α ≈ 0 the uncertainties of the mass estimation are dominant. We
observe that, for example, the parameter ξR can take any value
between 1.4 and 3 for different α.

In case that the uncertainties only deviate slightly from the
isotropic case the slope of the parameters tells us how strong
these errors propagate to the final fit values. Unfortunately the
slope of the parameters aroundα ≈ 0.5 is large. Thus, it is crucial
to have a good estimate of the distribution of uncertainties. If we
can improve the estimates of the uncertainties we can improve
the validity of the parameter estimates. Any study based on a
parameter estimate using isotropic uncertainties has to take the
rather large additional uncertainties due to this assumption into
account.

Besides the demonstrated effect of the anisotropy of the un-
certainties of the mass estimates and the luminosity estimates, a
similar effect can be found if σLR � σLX We note that the best fit
values do not depend on the absolute value of the combined σ
but on the relative prominence of the different σi.
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Fig. 1. The effect of anisotropic errors on the best fit parameters of the
fundamental plane (Eq. (1)). The horizontal axis gives the anisotropy
parameter α. A small value of α denotes that the uncertainties in the
mass estimate dominate, while for large values the uncertainties of the
luminosity are dominant. α = 0.5 corresponds to isotropic errors as
used by MHDM. Also shown are the best fit values of MHDM and their
uncertainties. Depending on the choice of the uncertainties one can ob-
tain values of the parameters ξR between 1.4 and 3 and ξM between –0.8
and –3.

One problem of this parameter estimation scheme is that we
can not deal with coupled uncertainties. We include several mea-
surements of the XRBs GX 339−4 and V404 Cyg so the uncer-
tainties of the mass and distance measurements are not indepen-
dent for these datapoint. We will neglect this effect for simplicity,
but it may influence the estimated parameters especially for the
small subsamples.

2.3. Error budget

Both luminosities depend on the measured flux and the distance,
thus, the scatter in both quantities is coupled. To separate the
equation into variables that have nearly independent errors, we
separate the effect of the distance:

LR,X = FR,XΞR,XD2 (6)

where FR,X denote the measured radio and X-ray fluxes and D
denotes the distance. The ΞR,X are conversion factors depending
on the observed band. We therefore find:

log FX=ξR log FR+ξM log M + (2ξR − 2) log D + bX + logΞ,(7)

where the mathematical conversion factors are combined into Ξ.
As they are just mathematical constants, they will not be dis-
cussed further.

We have seen in the previous section that the assumption of
isotropic uncertainties (as used by MHDM) will effect the best
fit parameters in an unknown way. To improve this situation, we
estimate the errors attributed to each variable. The fluxes FR,X
contain measurement errors and intrinsic scatter as discussed be-
low. Besides this, the masses and distances are uncertain as well.
However, as the correlation coefficient ξR will be around 1.4 the
effect of errors in the distance estimation are less severe for the
correlation than for the individual luminosities as it appears with
a factor (2ξR − 2). As the merit function requires Gaussian er-
rors, we are always using symmetric errors in the log-log space,
many of the errors below are indeed symmetric and the other
parameters are only mildly asymmetric.

– Mass estimate: our XRBs LH state sample is dominated
by GX 334−9 and V404 Cyg. For GX 339−4 Hynes et al.
(2003) estimate a mass function of 5.8 ± 0.5 M�, which is
therefore a lower limit for the mass of the black hole. We
therefore assume a mass of 8 ± 2.0 M�. For V404 Cyg we
use a mass of 12 ± 2.5 M� (Orosz 2003 gives a range of
10–13.4 M�). Note that there are several data points for each
object. Thus, their uncertainties are coupled, which we can
not take into account. The mass estimates of the other XRBs
are also taken from Orosz (2003). For the AGN Merritt &
Ferrarese (2001) give an absolute scatter of 0.34 dex for
M−σ relation. The mass estimate using the M−σ relation
is independent of the distance of the source (cf., Ferrarese &
Ford 2005). This method is used for all galaxies except our
BL Lac objects. For masses estimated with the M−σ relation
we will use the scatter of the correlation as a measure of the
uncertainty for the mass estimate: 0.34 dex. We use velocity
dispersions from the Hypercat catalog (Prugniel et al. 1998).
For the BL Lac objects we used indirectly derived velocity
dispersions from Woo & Urry (2002). Thus, these indirect
measurements will have a higher uncertainty. Bettoni et al.
(2001) give an uncertainty of these indirectly measured ve-
locity dispersions σ a value of δσ = 18 km s−1, which yields
an additional uncertainty of ≈0.3 dex for the mass estimate.
Thus, we use an uncertainty of 0.46 dex for the mass estimate
of the BL Lac objects. The indirect method to derive the ve-
locity dispersion depends slightly on the distance. However,
as we only use this method for BL Lac objects and the dis-
tances are accurate compared to 0.46 dex uncertainty, we will
ignore this effect. For Sgr A∗, M 81, and NGC 4258 we use
direct mass measurements (see FKM), the mass uncertainties
are as low as 10% (<0.05 dex).

– Distance measurement: The distance of GX 339−4 is still
under debate. Shahbaz et al. (2001) and Jonker & Nelemans
(2004) give a lower limit of 6 kpc, but the distance may be
as high as 15 kpc (Hynes et al. 2004). We therefore adopt a
distance of 8 ± 2 kpc. For V404 Cyg, we adopt the distance
of 4 kpc (Jonker & Nelemans 2004). We use an uncertainty
of 1 kpc, as we can not account for asymmetric uncertain-
ties and have the issue of coupled errors. For nearby AGN
we use updated distances from Maoz et al. (2005), Tonry
et al. (2001). If these are not available, we use the distance
estimates as given in the Tully (1988). The distance uncer-
tainty is hard to access, as many different methods are used
for which the uncertainty is sometimes not well known. We
assume 40%, however, we checked that it does not change
the result if one assumes less scatter. For AGN with dis-
tances derived from the Hubble law, we use an error es-
timate based on the peculiar velocities in the Hubble flow
and the uncertainties of the Hubble constant (we assume
H0 = 72 km s−1 Mpc−1 Spergel et al. 2003, 5% uncertainty,
ΩΛ = 0.7 and ΩM = 0.3). Hawkins et al. (2003) give a pe-
culiar velocity of 506 km s−1 which corresponds to 6.7 Mpc.
Thus, for most sources the distance uncertainty is mainly due
to the uncertainty in the Hubble flow. For the MHDM sam-
ple, we use the distances as provided by MHDM and assume
a constant uncertainty of 40% in the distance estimation to
avoid that we overestimate the intrinsic scatter, see below.
Here, we also checked that this assumption is not critical. For
most sources MHDM derive the distance from the Hubble
law, so that the uncertainty is mainly due to the Hubble con-
stant.

– Flux measurements: for all but the faintest objects are
the fluxes very well constrained. Errors for radio and
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optical/X-ray fluxes are usually less than 10%. Systematic
errors, e.g., due to the extrapolation of the different observed
energy bands to our used X-ray band (0.5–10 keV), will also
be of a similar magnitude. Thus, as these errors are small
compared with the scatter due to the mass measurements, we
do not introduce significant changes by assuming that these
errors are isotropic. Due to this assumption, it is possible to
unify these flux errors with the intrinsic errors of the source.

– Intrinsic errors: besides the measurement errors above, there
are several sources of intrinsic scatter of often unknown
magnitude:
– Non-simultaneous observations of the AGN: the radio

and X-ray observations are non-simultaneous, there is of-
ten more than a year between the different observations.
All accreting black holes (AGN and XRBs) are highly
variable. Thus, already this effect can lead to a deviation
by more than an order of magnitude. The orientation of
this uncertainty is likely to be isotropic.

– Beaming: in most models at least the radio emission is
attributed to the relativistic jet and will thus be relativis-
tically beamed. In case that the X-rays originate from the
disk/corona they will not be beamed and the deviations
from the correlation will be enormous. For jet models,
the X-ray emission may be beamed like the radio emis-
sion or have a different beaming patters (e.g., a velocity
structure in the jet Chiaberge et al. 2000; Trussoni et al.
2003). The asymmetry of this effect depends on the exact
model, so we can only assume isotropy.

– Source peculiarities: the surrounding environment of the
black hole will play a role on the exact emission proper-
ties (e.g., there might be compact hotspots). There may
also be an obscuring torus or other obstacles for the emis-
sion. This can result in strong X-ray absorption or the ra-
dio emission may also be absorbed. All models, however,
only consider the nuclear emission.

– Spectral energy distribution (SED): depending on the
real emission model, it may be that we are not observ-
ing the same emission type in the X-rays for the differ-
ent objects. For jet models the effect of radiative cooling
and the synchrotron cut-off have to be mentioned (see
Sect. 2.5). For disk models a similar effect may be due to
the relative strength of the disk component, the jet com-
ponent as observed in the resolved X-ray jets, and the
Comptonization component. The X-rays in XRBs may
not originate from the same process as those in AGN due
to the mass scaling by whatever theory is used.

The total intrinsic scatter will be derived from the scatter of
the correlation. We will see below that the intrinsic scatter
is surprisingly small considering this long list of possible er-
rors.

For the two last sources of scatter, the flux measurements and
the intrinsic errors, we do not have an exact knowledge of their
magnitude and their asymmetry. We will therefore assume that
they are isotropic in the log FX − log FR plane and parameter-
ize their combined magnitude as σInt. This parameter σInt will
be chosen, such that the reduced merit function is unity. With
this choice we assume the error distribution just described; this
will therefore affect the final fit values. If one distributes the ex-
cess variance in a different manner one will find slightly dif-
ferent best fit parameters. However, as we know several effects
that introduce uncertainties in the radio and X-ray fluxes and the
the excess variance in these variables is surprisingly low, it is
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Fig. 2. Sketch of the SED of a relativistic jet as for example observed
in BL Lac objects. At lower photon energies synchrotron emission is
dominant while the high energy spectrum is usually explained by in-
verse Compton processes. See text for details.

sensible to include the excess variance only in the radio and X-
ray fluxes.

2.4. The parameter σInt

In Sect. 2.3 we present our assumptions on the uncertainties of
the measured variables. In case that these assumptions are ex-
act, e.g., the magnitude of the uncertainties and that they are
Gaussian distributed, the fitted parameter σInt will describe the
real intrinsic scatter of the sources. This value could then be used
to constrain the different contributions like the effect of beam-
ing. However, if we overestimate the uncertainties in the flux,
distance, and mass estimation the derived σInt will be too small.
Similarly, an underestimation will lead to an overestimation of
the intrinsic scatter.

Our method can not treat coupled uncertainties correctly. For
XRBs we include several data points for each source, but there
is only one mass and distance estimates for that source. Thus,
as we have to assume that our uncertainties are independent, we
overestimate the measurement errors. Thus, the inferred σInt for
XRBs alone is zero. This means that the deviations of the data
points from the optimal correlation is within the measurement
uncertainties. On the other hand, for the AGN samples the un-
certainties are independent. Every source is included only once
in the sample. Here, σInt should be a good measure for the in-
trinsic scatter.

2.5. Origin of X-ray emission in the jet model

The spectrum of a relativistic jet can be directly observed
in BL Lac objects, as relativistic boosting increases the rel-
ative prominence of the jet component compared to the disk
(Blandford & Rees 1978). An idealized spectrum of a jet, i.e.,
the “Camel’s back”, is shown in Fig. 2 in flux (Fε) representa-
tion. Such a jet component exists at least in every AGN with a
detectable jet, most likely in all AGN. The relative prominence
of this component in respect to disk and corona emission will
vary. Furthermore, the exact shape of the SED depends also on
the inclination angle, the Lorentz factor of the jet and peculiari-
ties of the source.

The spectrum of a conical jet is flat (in Fν representation)
due to optically thick synchrotron emission up to the turnover
frequency εt. This is followed by the optically thin power law
component with a typical energy index α (Fε ∼ ε−α) of around
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α = 0.5. This emission comes from the innermost region of the
radiating jet. The power law continues up to the energy where
radiative cooling plays a role (εcool); here the power law may
steepen to α ≈ 1. Finally the synchrotron emission cuts off
at (εcut), due to the acceleration mechanism creating the radi-
ating particles. At photon energies above the synchrotron cut-
off, synchrotron-self Compton emission and external Compton
emission are visible. As the jet is relativistically boosted, the to-
tal observed power in these two humps depend on the jet Lorentz
factor and the inclination of the source. The relative prominence
of the synchrotron and the inverse-Compton emission depends
on these two parameters as well.

The photon energy where the synchrotron emission cuts off,
seems to depend on the total power of the accreting system, see
e.g., the blazar sequence (Fossati et al. 1998; Ghisellini et al.
2002). For low power systems, like high-peaked BL Lac objects
(see the previous references), the cut-off energy can be above
or around the standard X-ray band of 0.5–10 keV, while for
strongly accreting systems, e.g., flat spectrum radio quasars, this
cut-off can be as low as 0.1 eV. Thus, we can expect that only
the X-rays of low power systems actually originate from syn-
chrotron emission.

Radiative cooling in the X-rays, as for example discussed by
Heinz (2004), may play a role in some sources of low to inter-
mediate accretion rates. Its main effect will be that the measured
X-ray flux will be reduced to what one would expect from a sim-
ple uncooled jet. However, the X-ray reduction due to cooling is
far less severe than the synchrotron cut-off. The effect of cooling
will increase the observed intrinsic scatter as we are exploring
only the simplest jet model: the uncooled jet. For most AGN
besides the LLAGN in the MHDM sample this synchrotron cut-
off will be below the X-ray band. The X-ray emission in these
sources will not be due to synchrotron emission. It will either
originate from inverse-Compton processes in the jet or from the
disk/corona.

The cut-off energy (εcut) of LLAGN sources in the KFC sam-
ple will for most sources be above the ROSAT and Chandra
bands. The radio luminosities of the LLAGN are in the range
of 1036−38 erg/s. If one extrapolates Fig. 7 of Fossati et al. (1998)
to these energies, one can expect a cut-off above 1019−20 Hz or
40–400 keV. For BL Lac objects and FR-I RGs, the KFC sample
extrapolates optical fluxes to an equivalent X-ray flux. This treat-
ment avoids the effect of the synchrotron cut-off also for these
sources. The “jet only” model should therefore be applicable to
the KFC sample.

2.6. Origin of the X-ray emission in the MHDM sample

The X-ray emission of many sources in the MHDM sample
is very likely not due to synchrotron emission, due to the
synchrotron cut-off. For example, for radio loud quasars, the
synchrotron cut-off is far below the X-ray regime (see e.g.,
Tavecchio et al. 2002). Only the X-ray emission from the
LLAGN may originate from synchrotron emission. Thus, the
“jet-only” model is not applicable to the MHDM sample, and
can therefore not be constrained using the MHDM sample.

The AGN sample of MHDM contains radio loud objects
(e.g., Cyg A, 3C273, etc.). The X-ray spectral index of radio
loud Quasars (RLQ) and those of radio quiet Quasars (RQQs)
seems to be different: ΓRLQ ≈ 1.63 ± 0.02 compared to ΓRQQ ≈
1.89 ± 0.11. Furthermore, RLQ show very weak or no reflec-
tion components and the strength of the soft excess seems to be
anti-correlated with the radio-loudness. These effects are usually

explained by a relativistic jet component in the RLQ case (see
e.g., Reeves & Turner 2000; Piconcelli et al. 2005).

On the other hand, there are several detected “resolved”
X-ray jets in AGN. For the source 3C 273, which is included
in the MHDM sample, see Marshall et al. (2001). Marshall
et al. (2005) and Sambruna et al. (2004) find in more than 50%
of the observed radio loud sources resolved X-ray jets. The
authors suggest that all bright radio jets may have X-ray
counterparts. The X-ray emission from the AGN jets is usu-
ally explained by non-thermal processes (synchrotron, inverse-
Compton, synchrotron-self-Compton), which process dominates
seems to vary from source to source. For a discussion see Harris
& Krawczynski (2002). As the jet is visible, it most likely con-
tributes at least at some level to the core X-ray flux. Furthermore,
many of the MHDM fluxes are derived from ASCA or GINGA
data. In that case, the Chandra resolved X-ray jet will be ob-
served as a point source. Note that the X-ray jets in AGN are of-
ten dominated by emission from knots, unlike what is expected
for LH state XRBs as modeled by Markoff et al. (2001a). From
the statistical studies and the direct observation of X-ray jets,
we conclude that at least some radio loud AGN in the MHDM
sample have an X-ray component originating from the jet.

Besides jet components, other features can contaminate the
X-ray fluxes, especially for non-Chandra data. The flux may
consist of several components originating from different phys-
ical processes, including the disk described by any model, the
corona, the reflection component, warm gas and the jet (at least
in radio loud objects).

2.7. Uncertainties of the estimated parameters

Given the data points and their estimated uncertainties we can
derive the optimal fit parameters from Eq. (2). The merit func-
tion χ̂2 can be used similarly to the usual χ2 to estimate the
confidence region of the parameters. The 1σ confidence region
should be given by ∆χ̂2 ≈ 2.3 as we have 2 degrees of freedom
in our model besides the offset bX. As problems may arise due
to the use of the nonlinear merit function or the unknown dis-
tribution function of the errors, we checked that this confidence
region is in agreement with the confidence region derived by a
Monte Carlo simulation and the Bootstrap method (see below).

In the Monte-Carlo simulation, the errors of the parame-
ters are estimated by creating a large number (5000) of artificial
datasets that have similar statistical properties compared to the
measured dataset. For each of the artificial datasets, we estimate
the best-fit parameters using the same method as for the original
dataset. From these fitted parameters, we derive the confidence
region and the ∆χ̂2 corresponding to the 1, 2 and 3σ confidence
regions. To create the artificial data, we consider each popula-
tion of sources of our measured dataset individually and mea-
sure their scatter and position in the log LR–log LX plane. In the
artificial dataset, we distribute the sources uniformly over their
radio luminosities. The artificial dataset will therefore also con-
tain simulated objects of all considered types. We assume that
the scatter compared to the real correlation is Gaussian. As seen
in Fig. 3 this seems to be roughly the case. We also introduce
flux limits in the simulation to access the effects of the distance
selection effect.

The bootstrap method functions as follows. From a set of N
measured sources, we draw N at random with replacement, thus,
creating an artificial dataset. This dataset contains some of the
sources more than once, while others are omitted. The param-
eters of the fundamental plane will be estimated for this sam-
ple in the same way as for the original dataset. These simulated
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Fig. 3. Histogram of the scatter in the full KFC sample. The scatter
can be well approximated by a Gaussian with the standard-deviation
σ = 0.50.

parameters should be distributed around the original best fit val-
ues as the measured parameters are distributed around the real
parameters (Press 2002). The benefit of this method is that it
does not require prior knowledge of the distribution function
from which the original dataset was drawn.

2.8. Different parameter estimators

Up to now we have only discussed the parameter estimation us-
ing the merit function (Eq. (2)). This method minimizes the aver-
age distance of the data-points from the plane weighted with the
measured uncertainties. Other possible methods used in astron-
omy include the ordinary least squares estimation or Maximum
Likelihood methods (see e.g., D’Agostini 2005). Even though
Maximum Likelihood estimators find the most probable param-
eters of a model, the method is often biased towards lower fit
parameters. To find the optimal fitting method for our problem,
we compare the different fitting methods using a Monte Carlo
simulation. We create several artificial samples with our Monte
Carlo simulation and compare the results of the different estima-
tors with the parameters used to create the sample. We set the
intrinsic scatter of our artificial XRB and LLAGN sample to 0.2
and for BL Lac and FR-I RGs to 0.8, which is roughly double
of what is found in our sample. The resulting intrinsic scatter of
the simulated sample is σint = 0.65. For each parameter estima-
tor consider two cases: First, we only use the average intrinsic
scatter (0.65) to estimate the parameters, and second, we use the
exact probability distribution used to create each individual data-
point.

For each estimator we simulated 100 different datasets and
give the average estimated parameters and the standard devia-
tion in Table 1. While the merit function seems to be a fairly
robust method, the maximum likelihood estimator is biased to-
wards smaller fit values. Thus, we will estimate our parameters
with the method using the merit function described in Sect. 2.

3. Results

Our fitting algorithm is only robust if our sources are normally
distributed around the fundamental plane. As a first test we show
a histogram of the scatter of the KFC sample around the best fit
to the fundamental plane in Fig. 3. The deviations are roughly
normally distributed with σ ≈ 0.5. Thus, the developed analysis
method can be utilized.

We fitted the KFC sample with the fundamental plane de-
scribed in Eq. (7). The parameter estimation method is described
in Sect. 2. We find as best fit values

ξR = 1.41+0.14
−0.12 ξM = −0.87+0.15

−0.17 bX = −5.01+3.35
−3.9 . (8)

The confidence region of the two relevant parameters and the fit
is shown in the top panel of Fig. 4. The given uncertainties are
derived from the ∆χ̂2 map. The intrinsic scatter in the fundamen-
tal plane is for this sample σint = 0.38 ± 0.06. The uncertainty
of σint has been derived by bootstrapping the measured sample.

The results of the KFC sample and the MHDM sample and
their subsamples is presented in Table 2. The errors given in this
table are derived using the Bootstrap method. As the errorbars
for the KFC sample are nearly identical for both methods, we
present only the bootstrapped errorbars for the different subsam-
ples. This error estimation is less dependent on the assumption of
normal distributed scatter. As the uncertainties are not strongly
anisotropic, we give a symmetric uncertainty to avoid problems
with anisotropic errors. We note that the different fit values do
not coincide within the errors for both samples due to the differ-
ent source populations included in the sample.

The subsample of the KFC sample containing no FR-I ra-
dio galaxies has a larger radio coefficient (ξR = 1.64 ± 0.13)
and a smaller mass coefficient (ξM = −1.08 ± 0.14) than the
full sample. On the other hand, the subsample without BL Lac
objects deviates in the other direction (ξR = 1.25 ± 0.1 and
ξM = −0.74 ± 0.12). This difference arises, because FR-I ra-
dio galaxies are fainter in the optical and X-rays than the de-
boosted BL Lac objects (Chiaberge et al. 2000). The difference
in the optical/X-ray luminosity can be explained by a velocity
structure in the jet. As we include a similar number of BL Lac
objects and FR-I radio galaxies in the full sample, these effects
will partly average out. However, the final value for the param-
eters will depend on the total weight each AGN class has in the
total sample.

The KFC subsample containing only XRBS, Sgr A∗ and
LLAGN has similar best fit values as the subsample contain-
ing no FR-I RGs. Its correlation coefficient, ξR = 1.59 ± 0.21,
is larger than the one found for the full sample. This is partly
due to the fact that the intrinsic scatter of this subsample is ex-
tremely low: σint = 0.12. Thus, the errors of the mass estimation
dominate (0.34 dex) the overall error budget and one gets larger
fit values as shown in Fig. 1. If one adds Seyferts and Transition
objects, which may correspond to the high state, the correlation
coefficient gets even larger. However, all KFC subsamples seem
to be roughly in agreement with ξR ≈ 1.4 and ξM ≈ −0.8. This
radio coefficient is in agreement with the radio/X-ray correlation
for GX 339−4, which has ξR ≈ 1.4 (Corbel et al. 2003).

If one uses the quiescent flux of Sgr A∗ instead of the flare
by Baganoff et al. (2001) in the KFC sample the best fit values
for ξR increase. The subsample containing only XRBs, the qui-
escent Sgr A∗ and LLAGN yields ξR = 1.97 and ξM ≈ −1.41.
Interestingly, the latter subsample has an intrinsic scatter of zero,
i.e., the scatter of the correlation is in agreement with the as-
sumed measurement errors. However, the inferred fit for ξR is
no longer in agreement with the value found for XRBs only
(ξR = 1.4). The quiescent X-ray emission from Sgr A∗ is an
extended (Baganoff et al. 2003), while this is not the case for
cores of the XRBs or AGN. Thus, it is not surprising that the fit
values change.

For the previous fits we have used the same intrinsic scat-
ter σint for all our objects. However, we have seen that XRBs and
LLAGN can be fitted with significantly less excess scatter than
the full sample. Thus, we can fix the intrinsic scatter of XRBs
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Table 1. Performance of the different parameter estimators. The given uncertainties is the standard deviation of the fit parameters obtained from
different artificial datasets.

Estimator ξR ξM bX

Assumed parameters 1.40 –0.85 –4.9
Merit function 1.42 ± 0.13 −0.87 ± 0.16 −5.4 ± 3.6
Merit function with exact knowledge of scatter 1.40 ± 0.08 −0.85 ± 0.09 −4.8 ± 2.3
Merit function with isotropic uncertainties 1.54 ± 0.16 −1.03 ± 0.19 −8.5 ± 4.4
Maximum likelihood 1.10 ± 0.08 −0.47 ± 0.09 3.5 ± 2.1
Maximum likelihood with exact knowledge of scatter 1.25 ± 0.06 −0.68 ± 0.07 −0.51 ± 1.68
Ordinary least squares 1.09 ± 0.08 −0.46 ± 0.09 4.0 ± 2.3

Fig. 4. On the left side we show the χ2 map with one (solid line), two (dashed) and three sigma (dotted) levels together with the predictions of
the “jet only” model and the ADAF/jet model. The right side shows the best fit and the AGN and XRB sample. The three rows show the different
samples, from Top to bottom: KFC sample, Only XRBS and LLAGN of the KFC sample, and the edited MHDM sample.

and LLAGN to 0.1 dex and fit only the scatter in the BL Lac and
FR-I RGs. Now, we find ξR = 1.61±0.11 and ξM = −1.08 which
is similar to the result found for XRBs, Sgr A∗ and LLAGN only.
The intrinsic scatter found for FR-I RGs and BL Lac objects is
0.55 dex. The statistical weight for these two classes is there-
fore significantly less than that of the LLAGN and XRBs. It is
therefore not surprising that we find similar fit values: the fitting
method puts only very a low weight on the additional sources. To
observe selection effects it is therefore sensible to use a constant
intrinsic scatter for all sources.

For the full edited MHDM sample, we find ξR ≈ 1.74+0.23
−0.19

and ξM ≈ −1.35+0.24
−0.30. As for the KFC sample, we also find a

selection effect for the MHDM sample. The MHDM subsam-
ple containing no Seyfert objects yields as best fit parameters
ξR ≈ 2.12 and ξM ≈ −1.75, while the one containing no Quasars
gives ξR ≈ 1.55 and ξM ≈ −1.15. This effect can be explained
by the fact that the quasars are more radio quiet than the other
AGN in the sample. We note that the formal fits of ξR for most
subsamples tend to be significantly higher than the value found
by Corbel et al. (2003) of ξR = 1.4 for XRBs. Overall, we find
the choice of the sample strongly influences the final fit value in
both considered samples (MHDM and KFC). This is not neces-
sarily worrisome, as one does expect somewhat different results
for different black hole states.
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Table 2. Best fit results for the KFC sample and the original and edited MHDM sample. Besides the full sample we also give the parameters for the
subsamples containing only a limited set of AGN classes. Note that LINER sources classified by MHDM are not limited to LLAGN. The LH XRB
sample is defined in Sect. 2.1. The column N denotes the number of sources in the sample.

ξR ξM bX σint ξm|ξr = 1.4 σint|ξr = 1.4 N

KFC sample

Full sample 1.41 ± 0.11 −0.87 ± 0.14 −5.01 ± 3.20 0.38 −0.86 ± 0.02 0.38 77
(XRB, Sgr A∗, LLAGN, FR-I, BL Lac)

Full sample + Seyferts & Transition obj. 1.48 ± 0.13 −0.95 ± 0.16 −6.89 ± 3.83 0.44 −0.86 ± 0.02 0.44 100

XRB, Sgr A∗, LLAGN, FR-I 1.25 ± 0.10 −0.74 ± 0.12 −0.46 ± 2.93 0.28 −0.91 ± 0.02 0.30 58

XRB, Sgr A∗, LLAGN, BL Lac, 1.64 ± 0.13 −1.08 ± 0.14 −11.67 ± 3.59 0.18 −0.81 ± 0.02 0.23 62

XRB, Sgr A∗, LLAGN 1.59 ± 0.21 −1.02 ± 0.21 −10.15 ± 6.17 0.12 −0.84 ± 0.02 0.15 43

XRB, Sgr A∗, LLAGN, Seyfert & Transition 1.86 ± 0.35 −1.33 ± 0.36 −17.98 ± 9.92 0.35 −0.85 ± 0.02 0.39 66

Sgr A∗, LLAGN, FR-I, BL Lac 1.70 ± 1.17 −2.17 ± 4.09 −5.21 ± 12.08 0.45 −1.15 ± 0.38 0.46 52

Full sample with quiescent Sgr A∗ 1.52 ± 0.14 −1.00 ± 0.18 −8.15 ± 4.11 0.39 −0.85 ± 0.02 0.40 77

XRB, quiescent Sgr A∗, LLAGN 1.97 ± 0.11 −1.41 ± 0.10 −21.05 ± 3.05 0.00 −0.86 ± 0.02 0.23 43

Original MHDM sample 1.45 ± 0.17 −0.99 ± 0.22 −5.98 ± 5.02 0.72 −0.93 ± 0.03 0.73 116

MHDM sample with LH XRBs

Full sample 1.74 ± 0.20 −1.35 ± 0.27 −14.23 ± 5.75 0.65 −0.92 ± 0.03 0.68 103
(XRB, Sgr A∗, LINER, Quasar, Seyfert)

XRB, Sgr A∗, LINER, Seyfert 1.55 ± 0.19 −1.15 ± 0.24 −8.93 ± 5.37 0.64 −0.96 ± 0.03 0.64 92

XRB, Sgr A∗, LINER, Quasar 2.12 ± 0.31 −1.75 ± 0.38 −25.20 ± 8.81 0.51 −0.90 ± 0.04 0.62 57

XRB, Sgr A∗, Quasar, Seyfert 1.79 ± 0.28 −1.39 ± 0.37 −15.68 ± 7.87 0.63 −0.88 ± 0.03 0.65 82

XRB, Sgr A∗, LINER 1.59 ± 0.35 −1.19 ± 0.40 −10.11 ± 10.13 0.50 −1.54 ± 0.21 0.71 46

XRB, Sgr A∗, Quasar 2.03 ± 0.28 −1.55 ± 0.36 −22.76 ± 7.86 0.14 −0.74 ± 0.04 0.32 37

Sgr A∗, LINER, Quasar, Seyfert 1.65 ± 0.26 −1.72 ± 0.50 −8.02 ± 8.06 0.74 −1.41 ± 0.22 0.76 78

Fig. 5. Best fit for the full KFC sample if one fixes ξR to 1.4, which is the
value found for XRBs. Only the mass scaling parameter is fitted. One
finds: ξM = −0.86 ± 0.02 and bX = −4.9. The intrinsic scatter increases
by less than 0.01 compared to the fit in both parameters (σint = 0.38).

The correlation index ξR for XRBs only is better constrained
than in the case we are considering here, as one does not have
to consider the mass scaling in that case. For XRBs only one
finds ξR ≈ 1.4 (Corbel et al. 2003; Gallo et al. 2003). If we
use this prior knowledge to fix the correlation index ξR to 1.4
and only fit the mass scaling parameter ξM to our full KFC sam-
ple, we find ξM = −0.86 ± 0.02 (see Table 2). This fit is shown
in Fig. 5. The fit is not significantly worse than the original
fit in both parameters, as the intrinsic scatter increases by less
than 0.01 (σint = 0.38). Interestingly, the best fit value for the

subsample of LLAGN, that had a higher correlation (ξR = 1.59)
yields with the prior knowledge ξM = −0.84±0.02, in agreement
with the value found for the full sample. For the MHDM sample,
we find ξM = −0.92 ± 0.04. As the correlation index ξR is well
constrained for XRBs, fixing ξR = 1.4 will likely yield the best
estimates for the parameters of the fundamental plane.

Besides checking the effect of anisotropic errors we also ex-
plore the effect that the uncertainties are not normally distributed
but exponentially. In that case, one does not minimize the square
of the deviations divided by the uncertainty but the absolute
value. This “robust” estimation (Press 2002) yield ξR = 1.39 and
ξM = −0.84. For the edited MHDM sample we find ξR = 1.63
and ξM = −1.14. Thus, the change of the distribution of the un-
certainties does not significantly change the best fits.

In Table 2, we also show the intrinsic scatter measured for
the different datasets. If we drop our assumption that the intrinsic
scatter is the same for AGN and XRBs, e.g. if σint is smaller for
XRBs than for AGN, then the correlation coefficient ξR will rise
slightly.

3.1. The distance selection effect

Our sample of AGN and XRBs is a random sample of well stud-
ied objects and not a complete distance limited sample. Thus,
one can fear that the fundamental plane is a spurious correla-
tion created by distances selection effects. It has been shown
with partial correlation analysis by MHDM that the fundamental
plane is real and not spurious. This problem has been discussed
in detail by Merloni et al. (2006), where the authors show further
statistical and observational evidence that the fundamental plane
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Table 3. Effect of the observing flux limits on correlated data: most radio fluxes in our sample are obtained with the VLA, which can detect 0.1 mJy
within a 10 min snapshot. Chandra can go as deep as 10−14 erg/s/cm2 in a 1000 s observation.

Radio limit [mJy] X-ray limit [erg/s/cm2] ξR ξM bX

no limit no limit 1.40 ± 0.11 −0.86 ± 0.15 −4.84 ± 3.2
0.5 10−13 1.37 ± 0.11 −0.80 ± 0.15 −4.21 ± 3.2
5 10−13 1.34 ± 0.10 −0.77 ± 0.13 −3.67 ± 3.1
0.5 10−12 1.36 ± 0.12 −0.76 ± 0.16 −3.94 ± 3.4
5 10−12 1.27 ± 0.10 −0.64 ± 0.12 −1.75 ± 2.8

is indeed real. Here, we will just present some further tests for
our sample.

The fundamental plane is an extension of radio/X-ray corre-
lations in XRBs (Gallo et al. 2003). This correlation is highly
significant and is not effected by distance effects as we can
trace individual objects on the correlation. In AGN, Hardcastle
& Worrall (1999) and Canosa et al. (1999) showed that a
radio/X-ray correlation exists and is also not created as an ar-
tifact of plotting “distance against distance” in a flux limited
sample. If one combines these two correlations with a mass term
(which is needed, see Falcke & Biermann 1996), one arrives nat-
urally at the fundamental plane.

One method to check if a correlation between two observ-
ables is only created by a third variable, is the partial correlation
coefficient. In our case for radio and X-ray luminosity is the pa-
rameter that may create a spurious correlation the distance. The
correlation coefficient is defined as:

rrx,d =
rrx − rrdrxd√

(1. − r2
xd)(1. − r2

rd)
, (9)

where rab is the normal Pearson R for a and b. This correlation
coefficient should remove the effect of the different distances.

If we fix the mass coefficient ξM = −0.85, we find rrx,d =
0.91. We have written a small Monte Carlo simulation, to test if
this coefficient is significant. We assume a uniform distribution
for the distances and the fluxes in log-space, and assume that the
fluxes are uncorrelated. We created 106 artificial datasets, and
found that not a single dataset had a partial correlation coeffi-
cient as large as 0.8, even though the average normal correlation
coefficient for the luminosities was 0.99. The standard devia-
tion of the partial correlation coefficient is 0.11 and the mean, 0.
Thus, the radio/X-ray correlation with a fixed mass coefficient
is significant at the 8σ level. However, in our sample, we only
include objects with measured radio and X-ray fluxes and do not
include upper limits which could affect the significance.

On the other hand, if we fix ξM = 1.4 the fundamental plane
suggests that LX

L1.4
R

and M are correlated. The Kendall τ for this

correlation is τ = 0.6, which is significant as for uncorrelated
data τ is normally distributed around 0 with a standard deviation
of 0.006. Again we can check whether this is due to the differ-
ent distances in the sample: The partial correlation coefficient is
rLX/L1.4

R ,M,D
= 0.84, which is again significant (7σ).

Even if the observational flux limits can not create a spurious
fundamental plane, these limits might still bias the estimated pa-
rameters. This problem can be tested with our Monte Carlo sim-
ulation. We start with our fundamental plane and observe the pa-
rameter changes due to increasing flux limits. As the flux limits
may reduce the observed scatter around the fundamental plane,
we increase the intrinsic scatter by a factor of 2. The results are
summarized in Table 3. As long as the flux limits stay in a rea-
sonable range, the changes to the parameters are below 0.1, i.e.,
they are of the order of the uncertainties of the fits.

3.2. Comparison of the KFC sample and the MHDM sample

The correlation coefficient ξR in the MHDM sample and its sub-
samples seems larger than those usually found in the KFC sam-
ple and a similar effect can be found for ξM. The fits of the KFC
sample and its subsamples are in agreement with the value found
for LH state XRBs (ξR = 1.4), while the deviations are larger for
the MHDM sample. This may be seen as a hint that the MHDM
sample is not simply a continuation of the LH state correlation
for XRBs, but it may contain other effects like a different source
of emission.

The main statistical difference between the MHDM sample
and the KFC sample is the smaller intrinsic scatter of the latter:
σint = 0.39 compared to σint = 0.65. It is hard to assess the un-
certainties of this value due to selection effects as the underlying
distribution is unknown. Bootstrapping yields an error for both
values around 0.06.

The discrepancy is partly due to the fact that the KFC sam-
ple has less AGN compared to XRBs than the MHDM sam-
ple. However, even if one adds the Seyferts and transition ob-
jects of Nagar et al. (2005) to create a sample of similar size
than the MHDM sample, then the intrinsic scatter is still less
(σint = 0.46) than for the MHDM case. The same is true for the
subsamples of similar size.

The most homogeneous subsample is the sample contain-
ing only LLAGN, LH state XRBs and Sgr A∗. Here we find
σint = 0.11. This low value is not only due to the fact that we
overestimated the errors of the XRBs, as the numerical value is
below 0.1 for the LLAGN sample without XRBs as well. Thus,
the correlation is extremely tight for the lowest luminosity ob-
jects. If we extend this sample to slightly higher accretion rates,
i.e., include FR-I RGs and BL Lac objects the scatter increases
due to peculiarities of these objects. The scatter further increases
if we included objects FKM classify as high state objects. Thus,
the reduced scatter supports the classification of AGN classes by
FKM and suggests that there is a difference between LH state
AGN and HS state objects.

3.3. Interpretation in the context of the proposed models

In Fig. 4, we show the χ̂2 maps of the different samples and the
predictions of the jet model and one disk/jet model. For the “jet
only” model the predicted values are: ξR = 1.38 and ξM = −0.81
(FKM) while the values for the “ADAF/jet” model are ξR = 1.64
and ξM = −1.3 (MHDM). The exact value for a disk/jet model
depends on the solution used for the accretion flow.

The full KFC sample contains some sources, for which we
used optical fluxes to derive our equivalent X-ray luminosities.
Thus, the “ADAF/jet” does not have to be valid. If we ignore this,
the full KFC sample seems to favour the “jet only” model as, ac-
cording to the confidence region, we can rule out the “ADAF/jet”
possibility by more than 3σ. However, the exact fit values
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depend on the choice of the sample and the used assumptions
for the statistical model.

In contrast to the claims of Heinz (2004), the correlation is
in agreement with a simple jet model in the regime where radia-
tive cooling is not important. The choice of sources minimizes
the effect of radiative cooling and the synchrotron cut-off as dis-
cussed in Sect. 2.5, but it can not be ruled out that cooling has
some effect on this sample.

The correlation with the least scatter is found for the subsam-
ple of the KFC sample containing only LH state XRBs, Sgr A∗
and LLAGN. Its confidence region is shown in the middle row
of the figure. As this subsample consists of “real” radio/X-ray
data, both models claim to be valid. However, the fit is not
in good agreement with both models. The “jet only” model
is disfavoured with ≈3σ while the “ADAF/jet” model is even
stronger rejected. The remarkable low scatter in this subsample
σInt = 0.10 supports the idea that LH state XRBs and LLAGN
are indeed associated.

In the light of the jet model, it may be that the deviation of
the fit from the predicted value is due to synchrotron cooling
and the synchrotron cut-off. Even though we have designed this
sample to minimize their effect, it may still play a role in some
of the objects. To analyze this effect, one would have to com-
pare the X-ray spectrum with the assumed hard power-law and
take the spectral index into account. If one finds significant de-
viations in the spectral index one will have to resort to a more
complicated study where the measured spectral index or a more
complicated model of the SED is taken into account in the fit-
ting. Another possible explanation for this deviation, is that we
do not treat the coupled errors of the XRB data points correctly.
As we treat all errors as independent we do not constrain the
correlation index ξR from the XRBs as well as we could. If we
set this index to ξR = 1.4 and only fit ξM we find ξM = −0.85
for the KFC subsample containing LLAGN and XRBs. See also
Fig. 5. This is roughly in agreement with the value predicted by
the jet/synchrotron model of ξM = −0.81.

For a “disk/jet” model the discrepancy may be due to the
disk model used. Besides the discussed ADAF solution, one can
use any other accretion flow model to create the X-rays. This
can change the prediction considerably, see e.g., MHDM. Thus,
the discrepancy of the fit compared to the model predictions can
not rule out any of the suggested models with certainty, but – in
contrast to earlier claims – it does not support them either.

To compare the edited MHDM sample with the models, we
now have to note that the “jet only” model claims to become in-
valid for the X-ray emission of high state objects like Quasars.
Interestingly, the edited MHDM sample including high-state ob-
jects indeed disfavours the “jet only” model and is in agreement
with the “ADAF/jet” model (1.2σ). However, also for this sam-
ple the selection effects are dominating the exact fit value as well.

3.4. The conspiracy

We have seen that the fundamental plane in the two described
incarnations is only slightly different. For both samples we find
only slightly different parameters, and the scatter seems to be
less in the case of the KFC sample. The MHDM sample contains
low luminosity objects as well as bright quasars. However, there
do not seem to be obvious outliers.

The radio emission is usually attributed to the jet. For the
higher observation frequencies there are objects in the two sam-
ples that are clearly jet dominated and others for which the ac-
cretion flow will be the dominant part at higher frequencies.
The clearest examples for synchrotron emission are the BL Lac

objects in the KFC sample but, also for FR-I RG this origin is
well established (Chiaberge et al. 1999). On the other hand, the
X-ray emission from radio quiet Quasars is very likely not syn-
chrotron emission. Nevertheless, even though the inclusion of
the Quasar subsample changes the correlation and increases the
scatter, they do not drop off the correlation like HS state XRBs.
Likewise, if the X-rays of LH state XRBs and LLAGN are cre-
ated by the accretion flow, why do the BL Lac objects and FR-I
RGs still follow the fundamental plane? There seem to be a “fun-
damental plane conspiracy”: even though the emission processes
are different the objects all lie near the fundamental plane.

Within the jet model one can explain part of the conspiracy
by the different emission processes (see Fig. 2). If we observe a
source at a frequency after the synchrotron cut-off, the Compton
branch takes over. The inverse Compton emission can in many
sources reach the values one would find if one extrapolates the
synchrotron power-law to X-ray frequencies. It will mainly in-
crease the scatter in the correlation.

4. Conclusions

In the previous sections we have reconfirmed the existence of
the fundamental plane of accreting black hole in the black hole
mass, radio and X-ray luminosity space. We find that the result
of a statistical analysis of the radio/X-ray correlation depends
strongly on the assumptions of the distribution and magnitude of
the measurement errors and the intrinsic scatter. The measure-
ment uncertainties have been taken from the literature. The un-
known intrinsic scatter, e.g., the scatter due to relativistic beam-
ing, non-simultaneous observations or source peculiarities, has
been parameterized and estimated for the observed samples.

Using this refined method we compared the proposed
radio/X-ray correlations of MHDM and the improved KFC sam-
ple based on FKM. Both samples differ in their source selection:
while the KFC sample tries to include only sources belonging
to the low/hard state, the MHDM sample includes all kinds of
AGN. Also the observing frequencies differ for some sources, as
the KFC sample uses extrapolated optical fluxes for FR-I RGs
and BL Lac objects.

The best fit values of both samples depend on the relative
number of sources in each class of objects, e.g., the relative num-
ber of quasars or FR-I RGs compared to LLAGN. This can be
understood if different physical processes are dominant in the
different classes, e.g., the emission from LLAGN may be due to
the jet, while for quasars the disk emission dominates. The con-
fidence regions do not reflect this problem and have to be viewed
as a lower bound on the errors of the parameters.

The best fit values found for the KFC sample are ξR = 1.41±
0.11 and ξM = −0.87±0.14 while we find for the MHDM sample
ξR = 1.74± 0.20 and ξM = −1.35± 0.27. Thus, the KFC sample
suggests a simple uncooled “jet only” model while the MHDM
sample favours the “ADAF/jet” model. However, the selection
effects are very hard to control.

The KFC sample seems to be a more homogeneous sample,
as it has a lower intrinsic scatter. The fundamental plane for the
subsample containing only LLAGNs and XRBs is surprisingly
tight with a scatter of σint = 0.12 dex, while the full sample
has σint = 0.38. Compared to this, the MHDM sample has a
higher intrinsic scatter of σint ≈ 0.6 dex. This supports the AGN
classification of FKM in low/hard and high/soft state objects.

In general, the fundamental plane of black hole activity is
confirmed by our analysis. With a careful control of a homoge-
neous source selection (high-state versus low-state), the scatter
can reach rather low values. This promises a wider application
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of the “fundamental plane” in other contexts (see e.g., Merloni
2004; Maccarone 2005) and calls for improved radio and X-ray
surveys in the future.
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Abramowicz, M. A., Kluźniak, W., McClintock, J. E., & Remillard, R. A. 2004,

ApJ, 609, L63
Antonucci, R. 1993, ARA&A, 31, 473
Baganoff, F. K., Bautz, M. W., Brandt, W. N., et al. 2001, Nature, 413, 45
Baganoff, F. K., Maeda, Y., Morris, M., et al. 2003, ApJ, 591, 891
Barcons, X., Carrera, F. J., Watson, M. G., et al. 2002, A&A, 382, 522
Bettoni, D., Falomo, R., Fasano, G., et al. 2001, A&A, 380, 471
Blandford, R. D., & Rees, M. J. 1978, in Proc. of the Pittsburgh Conference on

BL Lac Objects, 1978, 328
Canosa, C. M., Worrall, D. M., Hardcastle, M. J., & Birkinshaw, M. 1999,

MNRAS, 310, 30
Chiaberge, M., Capetti, A., & Celotti, A. 1999, A&A, 349, 77
Chiaberge, M., Celotti, A., Capetti, A., & Ghisellini, G. 2000, A&A, 358, 104
Corbel, S., Fender, R. P., Tzioumis, A. K., et al. 2000, A&A, 359, 251
Corbel, S., Nowak, M. A., Fender, R. P., Tzioumis, A. K., & Markoff, S. 2003,

A&A, 400, 1007
D’Agostini, G. 2005 [arXiv:physics/0511182]
Esin, A. A., McClintock, J. E., & Narayan, R. 1997, ApJ, 489, 865
Falcke, H., & Biermann, P. L. 1995, A&A, 293, 665
Falcke, H., & Biermann, P. L. 1996, A&A, 308, 321
Falcke, H., & Biermann, P. L. 1999, A&A, 342, 49
Falcke, H., Malkan, M. A., & Biermann, P. L. 1995, A&A, 298, 375
Falcke, H., Körding, E., & Markoff, S. 2004, A&A, 414, 895
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P
Fender, R., Corbel, S., Tzioumis, T., et al. 1999, ApJ, 519, L165
Fender, R. P. 2001, MNRAS, 322, 31
Fender, R. P., Gallo, E., & Jonker, P. G. 2003, MNRAS, 343, L99
Ferrarese, L., & Ford, H. 2005, Space Sci. Rev., 116, 523
Fossati, G., Maraschi, L., Celotti, A., Comastri, A., & Ghisellini, G. 1998,

MNRAS, 299, 433
Gallo, E., Fender, R. P., & Pooley, G. G. 2003, MNRAS, 344, 60
Ghisellini, G., Celotti, A., & Costamante, L. 2002, A&A, 386, 833
Haardt, F., & Maraschi, L. 1991, ApJ, 380, L51
Hardcastle, M. J., & Worrall, D. M. 1999, MNRAS, 309, 969
Harris, D. E., & Krawczynski, H. 2002, ApJ, 565, 244
Hawkins, E., Maddox, S., Cole, S., et al. 2003, MNRAS, 346, 78
Heinz, S. 2004, MNRAS, 355, 835
Heinz, S., & Merloni, A. 2004, MNRAS, 355, L1
Homan, J., Buxton, M., Markoff, S., et al. 2005, ApJ, 624, 295
Hynes, R. I., Steeghs, D., Casares, J., Charles, P. A., & O’Brien, K. 2003, ApJ,

583, L95
Hynes, R. I., Steeghs, D., Casares, J., Charles, P. A., & O’Brien, K. 2004, ApJ,

609, 317
Jonker, P. G., & Nelemans, G. 2004, MNRAS, 354, 355

Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989,
AJ, 98, 1195

Körding, E., & Falcke, H. 2004, A&A, 414, 795
Maccarone, T. J. 2005, MNRAS, 360, L30
Maccarone, T. J., Gallo, E., & Fender, R. 2003, MNRAS, 345, L19
Maoz, D., Nagar, N. M., Falcke, H., & Wilson, A. S. 2005, ApJ, 625, 699
Markoff, S. 2005, ApJ, 618, L103
Markoff, S., Falcke, H., & Fender, R. 2001a, A&A, 372, L25
Markoff, S., Falcke, H., Yuan, F., & Biermann, P. L. 2001b, A&A, 379, L13
Markoff, S., Nowak, M., Corbel, S., Fender, R., & Falcke, H. 2003, A&A, 397,

645
Markoff, S., & Nowak, M. A. 2004, ApJ, 609, 972
Markoff, S., Nowak, M. A., & Wilms, J. 2005, ApJ, 635, 1203
Markowitz, A., Edelson, R., Vaughan, S., et al. 2003, ApJ, 593, 96
Marshall, H. L., Harris, D. E., Grimes, J. P., et al. 2001, ApJ, 549, L167
Marshall, H. L., Schwartz, D. A., Lovell, J. E. J., et al. 2005, ApJS, 156, 13
McClintock, J., & Remillard, R. 2006, in Compact Stellar X-ray Sources, ed. W.

H. G. Lewin, & M. van der Klis (Cambridge University Press)
Merloni, A. 2004, MNRAS, 353, 1035
Merloni, A., Heinz, S., & Di Matteo, T. 2003, MNRAS, 345, 1057
Merloni, A., Koerding, E., Heinz, S., et al. 2006 [arXiv:astro-ph/0601286]
Merritt, D., & Ferrarese, L. 2001, ApJ, 547, 140
Mirabel, I. F., & Rodríguez, L. F. 1999, ARA&A, 37, 409
Nagar, N. M., Falcke, H., & Wilson, A. S. 2005, A&A, 435, 521
Narayan, R., & Yi, I. 1994, ApJ, 428, L13
Nowak, M. A., Wilms, J., Heinz, S., et al. 2005, ApJ, 626, 1006
Orosz, J. A. 2003, in IAU Symp., 365
Piconcelli, E., Jimenez-Bailón, E., Guainazzi, M., et al. 2005, A&A, 432, 15
Poutanen, J. 1998, in Theory of Black Hole Accretion Disks (Cambridge

University Press), 100
Press, W. H. 2002, Numerical recipes in C++ : the art of scientific computing by

William H. Press. xxviii, 1,002 p. : ill.
Prugniel, P., Zasov, A., Busarello, G., & Simien, F. 1998, A&AS, 127, 117
Ptak, A., & Griffiths, R. 2003, in Astronomical Data Analysis Software and

Systems XII, ASP Conf. Ser., 295, 465
Quataert, E., & Gruzinov, A. 2000, ApJ, 539, 809
Reeves, J. N., & Turner, M. J. L. 2000, MNRAS, 316, 234
Reig, P., Belloni, T., & van der Klis, M. 2003, A&A, 412, 229
Ribó, M., Combi, J. A., & Mirabel, I. F. 2005, Ap&SS, 297, 143
ROSAT Scientific Team 2000, VizieR Online Data Catalog, 9028, 0
Sambruna, R. M., Gambill, J. K., Maraschi, L., et al. 2004, ApJ, 608, 698
Shahbaz, T., Fender, R., & Charles, P. A. 2001, A&A, 376, L17
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148, 175
Stirling, A. M., Spencer, R. E., de la Force, C. J., et al. 2001, MNRAS, 327, 1273
Sunyaev, R. A., & Trümper, J. 1979, Nature, 279, 506
Tananbaum, H., Gursky, H., Kellogg, E., Giacconi, R., & Jones, C. 1972, ApJ,

177, L5
Tavecchio, F., Maraschi, L., Ghisellini, G., et al. 2002, ApJ, 575, 137
Terashima, Y., & Wilson, A. S. 2003, ApJ, 583, 145
Thorne, K. S., & Price, R. H. 1975, ApJ, 195, L101
Tonry, J. L., Dressler, A., Blakeslee, J. P., et al. 2001, ApJ, 546, 681
Trussoni, E., Capetti, A., Celotti, A., Chiaberge, M., & Feretti, L. 2003, A&A,

403, 889
Tully, R. B. 1988, Nearby galaxies catalog (Cambridge and New York:

Cambridge University Press), 221
Uttley, P., McHardy, I. M., & Papadakis, I. E. 2002, MNRAS, 332, 231
Woo, J., & Urry, C. M. 2002, ApJ, 579, 530
Young, A. J., & Wilson, A. S. 2004, ApJ, 601, 133


