164 research outputs found

    Effects of temperature and photoperiod on photosynthesis in everbearing strawberry

    Get PDF
    There is little knowledge about photosynthesis in everbearing strawberry cultivars. We therefore grew three everbearing strawberry cultivars in daylight phytotron compartments at temperatures of 9, 15, 21 and 27°C and photoperiods of 10 h (SD) and 20 h (LD). After three weeks, the rates of dark respiration and photosynthesis and their acclimation were measured in 'Favouri'. Photosynthesis of plants grown in the various conditions was measured as CO2-uptake with an infrared gas analyzer at increasing irradiances (50-1000 µmol quanta m‑2 s‑1) and temperatures ranging from 9 to 27°C. In the dark, CO2-production (dark respiration) increased with increasing measuring temperature and was always largest in plants grown at low temperature (9°C) with no significant effect of photoperiod. Photosynthetic CO2-uptake was lowest at almost all irradiances in plants grown at 9°C, and with no clear effect of growth temperatures in the 15-27°C range. At saturating irradiances (500-1000 µmol), CO2-uptake increased with increasing measuring temperatures, reaching a plateau at about 21°C for plants grown at 15-27°C in SD and at 21-27°C in LD. For plants grown at 15°C in LD, the maximum CO2-uptake rate was obtained at 27°C. Light response curves showed that CO2-uptake increased with increasing irradiance and measuring temperatures and that the irradiance effect was markedly enhanced by increasing growth temperature. Maximum uptake rates were lowest for plants grown at 9°C at both photoperiods and highest for plants grown at 15°C in SD. Comparison of plants of 'Altess', 'Favouri' and 'Murano' at 500 µmol irradiance and 21°C revealed no significant differences in photosynthetic efficiency between the cultivars. Generally, the everbearing strawberry cultivars showed considerable photosynthetic plasticity to temperature within the 9-27°C range, although with an overall optimum at 15-21°C.acceptedVersio

    The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling

    Get PDF
    The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin–Benson–Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids—a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.ISSN:1040-4651ISSN:1531-298XISSN:1532-298

    Hazard characterization of Alternaria toxins to identify data gaps and improve risk assessment for human health

    Get PDF
    Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.The European Partnership for the Assessment of Risks from Chemicals has received funding from the European Union’s Horizon Europe research and innovation program under Grant Agreement No 101057014 and has received co-funding of the authors’ institutions. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the Health and Digital Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.info:eu-repo/semantics/publishedVersio

    Combined ship routing and inventory management in the salmon farming industry

    Get PDF
    We consider a maritime inventory routing problem for Norway's largest salmon farmer both producing the feed at a production factory and being responsible for fish farms located along the Norwegian coast. The company has bought two new ships to transport the feed from the factory to the fish farms and is responsible for the routing and scheduling of the ships. In addition, the company has to ensure that the feed at the production factory as well as at the fish farms is within the inventory limits. A mathematical model of the problem is presented, and this model is reformulated to improve the efficiency of the branch-and-bound algorithm and tightened with valid inequalities. To derive good solutions quickly, several practical aspects of the problem are utilized and two matheuristics developed. Computational results are reported for instances based on the real problem of the salmon farmer

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Functional growth analysis of ‘Sonata’ strawberry plants grown under controlled temperature and daylength conditions

    Get PDF
    In order to investigate the relationship between environmental conditions and vegetative growth and reproductive development in the strawberry, freshly rooted runner plants of the cultivar ‘Sonata’ were grown in a phytotron at temperatures of 12, 18 and 24 °C and photoperiods of 10 h short day (SD) and 20 h long day (LD) for 31 d and harvested at 10 d intervals. Plant dry weight and leaf area increases were exponential versus time, giving a linear regression with the natural log (ln). This rendered the relative growth rate (RGR) constant over time at each environmental condition. Over the entire 31 d growth period, the RGR increased linearly with increasing temperature across the range of temperatures with a further 10–13% enhancement by LD. A maximum RGR value of 0.077 g/g/d was determined in LD at 24 °C. Increases in the RGR was driven by a combined increase in net assimilation rate (NAR) and leaf area ratio (LAR) and was associated with an increased allocation of dry matter production into leaves and less into crowns and roots. Because of this, the shoot/root ratio increased consistently with increasing temperature and photoperiod, which was also associated with a significant increase in the tissue C/N concentration ratio. Low temperature promoted starch accumulation markedly in all parts of the plants, with a further enhancement by LD conditions, while the concentrations of soluble sugars were less affected by the climatic environment. Forcing of plants exposed to the various growth conditions for 31 d showed that all plants at 12 and 18 °C and 80% of those at 24 °C had initiated flowers in SD, whereas none had initiated flowers in LD regardless of temperature conditions. All these results demonstrate an opposite environmental relationship between vegetative growth and reproductive development in the strawberry.acceptedVersio

    Growth analysis of the everbearing strawberry 'Delizzimo' under controlled temperature and photoperiod conditions

    Get PDF
    Background There is limited information on the effect of environment on vegetative growth in everbearing (EB) strawberry (Fragaria x ananassa Duch.) and its comparison with the situation in seasonal flowering types. Methods We investigated the effects of photoperiod (daylengths of 10 and 20 h) and temperature (12, 19 and 26 ℃) on leaf growth, dry matter production and partitioning, concentrations of soluble sugars, starch, and chlorophyll in the F1 hybrid ‘Delizzimo’ grown in a single experiment in daylight phytotron compartments in Norway. Results Plants grown in the long photoperiod (LD) and higher temperatures had greater leaf growth and higher dry matter production than those under short day (SD) and low temperature conditions. Growth decreased over the 39 days of the experiment. The changes in growth in the different environments were associated with changes in relative growth rate (RGR) and these were driven by changes in net assimilation rate (NAR) and leaf area ratio (LAR). The plants directed more dry matter to the leaves and crowns under LD and high temperature conditions and less dry matter to the roots, thus increasing the plant’s shoot to root ratio. Long days decreased the concentrations of sugars and starch in most of the tissues, while the effect of temperature was more complex. Higher temperatures increased the concentrations of sugars in the leaves in LD, while starch accumulated in the roots under SD and low temperature conditions. Sucrose accumulated temporarily in the crowns at the time of flower bud formation in LD and higher temperatures. Conclusions The results of the experiment demonstrate that the effects of photoperiod and temperature on the vegetative growth of everbearing strawberry are similar to those reported for seasonal-flowering strawberry. Increases in temperature and photoperiod and the resulting enhancement of the RGR was associated with accumulation of soluble sugars (sucrose, glucose and fructose) in the above-ground parts of the plant, whereas low temperature and SD resulted in accumulation of starch in the roots.publishedVersio
    corecore