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ABSTRACT 10 

In order to investigate the relationship between environmental conditions and vegetative growth 11 

and reproductive development in the strawberry, freshly rooted runner plants of the cultivar 12 

‘Sonata’ were grown in a phytotron at temperatures of 12, 18 and 24 °C and photoperiods of 10 h 13 

short day (SD) and 20 h long day (LD) for 31 d and harvested at 10 d intervals. Plant dry weight 14 

and leaf area increases were exponential versus time, giving a linear regression with the natural log 15 

(ln). This rendered the relative growth rate (RGR) constant over time at each environmental 16 

condition. Over the entire 31 d growth period, the RGR increased linearly with increasing 17 

temperature across the range of temperatures with a further 10-13% enhancement by LD. A 18 

maximum RGR value of 0.077 g/g/d was determined in LD at 24 °C. Increases in the RGR was 19 

driven by a combined increase in net assimilation rate (NAR) and leaf area ratio (LAR) and was 20 

associated with an increased allocation of dry matter production into leaves and less into crowns 21 

and roots. Because of this, the shoot/root ratio increased consistently with increasing temperature 22 

and photoperiod, which was also associated with a significant increase in the tissue C/N 23 

concentration ratio. Low temperature promoted starch accumulation markedly in all parts of the 24 

plants, with a further enhancement by LD conditions, while the concentrations of soluble sugars 25 

were less affected by the climatic environment. Forcing of plants exposed to the various growth 26 

conditions for 31 d showed that all plants at 12 and 18 °C and 80% of those at 24 °C had initiated 27 

flowers in SD, whereas none had initiated flowers in LD regardless of temperature conditions. All 28 

these results demonstrate an opposite environmental relationship between vegetative growth and 29 

reproductive development in the strawberry. 30 
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1. Introduction 37 

Growth and development of the strawberry plant are regulated by a complex set of interacting 38 

environmental factors, of which temperature, daylength and light intensity predominate (Darrow, 39 

1936; Guttridge, 1985; Larson, 1994; Heide et al., 2013). Because of the economic importance of 40 

the crop, strawberry physiology and genetics have been extensively researched, and the literature 41 

in the field has been reviewed several times (e.g. Guttridge, 1985; Larson, 1994; Heide et al., 42 

2013). However, while the environmental regulation of flower formation and the transition from 43 

vegetative to reproductive development have been subject to extensive research, the 44 

environmental regulation of vegetative growth of the strawberry plant has received less attention. 45 

Growth analysis is commonly used to investigate the way in which environmental factors 46 

affect plant growth (Evans, 1972). The measure of growth used is the relative growth rate 47 

(RGR), which is a concept introduced by Blackman (1919) to describe the exponential phase of 48 

growth of annual crop plants. The concept assumes that new growth is simply related to existing 49 

biomass and represents the rate of increase in plant weight per unit of existing weight over a 50 

given period. It is the product of net assimilation rate (NAR), which is the increase in plant 51 

weight per unit of leaf area per unit time, and leaf area ratio (LAR) which is the ratio of leaf area 52 

to total plant weight: 53 

RGR = NAR x LAR 54 

Estimation of these parameters is very useful for investigation of the way in which environmental 55 

factors influence plant growth. For example, the equation illustrates that if the rate of 56 

photosynthesis is reduced for some reason, the plant can only maintain a constant RGR by 57 

increasing its leaf area, a response that is commonly observed (Fitter and Hay, 1987). 58 

In the cultivated strawberry, growth analyses have been conducted on field-grown plants to 59 

investigate the effects of genotype, cultivation systems, and seasonal changes in the environment 60 

(Olsen et al., 1985; Strik and Proctor, 1988a, b; Fernandez et al., 2001). However, under field 61 

conditions, reliable data for root growth are difficult to obtain or not recovered at all, and hence, 62 

the analyses are either inadequate or limited to the aboveground parts of the plant. Furthermore, 63 

in the natural environment, changes in important climatic factors such as photoperiod, 64 

temperature and solar radiation change simultaneously and in parallel, thus causing covariations 65 

that make it difficult to disentangle and assess the specific effect(s) of each factor. To our 66 

knowledge, growth analysis has not been performed with container-grown strawberry plants 67 
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maintained under controlled environment conditions where important climatic factors can be 68 

controlled and varied systematically. It should also be noted that the growth of strawberry plants 69 

is influenced also by ontogenetic factors (Olsen et al., 1985). As the young plant grows, an 70 

increasing proportion of the plant tissues enter a state of negative carbon balance due to mutual 71 

shading and reduced photosynthesis of older leaves. In addition, when the plant enters the 72 

reproductive phase, production and allocation of photosynthates become strongly influenced by 73 

the strong sink effects of developing flowers and fruits. 74 

This prompted us to undertake a classical growth analysis of young strawberry plants grown in 75 

a phytotron under controlled temperature and daylength conditions. The objective of the 76 

investigation was to quantify the impact of temperature and daylength on production and 77 

allocation of dry matter in young strawberry plants in order to facilitate our understanding of the 78 

processes by which the climatic environment control growth and development of young 79 

(vegetative) strawberry plants. Since starch content is known to greatly affect cold storage 80 

success and transplanting performance and growth vigor of strawberry plants (Bringhurst et al., 81 

1960; López et al., 2002), the content and partitioning of nonstructural carbohydrates were also 82 

determined in plants from the various growth conditions. Furthermore, the parallel environmental 83 

effect on flower induction was also included in the investigation. 84 

 85 

2. Materials and Methods 86 

2.1.  Plant material and handling 87 

The seasonal-flowering (June-bearing) cultivar ‘Sonata’ was used for the experiment. The 88 

cultivar, originating from a cross between ‘Elsanta’ and ‘Polka’ at Plant Research International, 89 

Wageningen, NL in 1998, has constantly expanded its acreage in Northern Europe where it is 90 

now dominating the fresh consumption strawberry market (Fragaria Holland, 2008). Young 91 

runner plants were harvested in late April from stock plants grown in a greenhouse maintained at 92 

a minimum temperature of 20 °C and a photoperiod of 20 h established by extension of the 93 

natural daylight with low-intensity incandescent light (c. 15 µmol m-2 s-1 PPF). The runners were 94 

rooted directly in 9 cm plastic pots in a water-saturated atmosphere at 25 °C and 20 h 95 

photoperiod. After 14 days (on 11 May), when the plants were uniformly rooted, they were 96 

moved into day-light compartments of the phytotron at the Norwegian University of Life 97 



5 

Sciences at Ås (59°40’ N, 10°40’ E ) and exposed to constant temperatures of 12, 18 and 24 °C 98 

and photoperiods of 10 and 20 h. 99 

In the phytotron, the plants received natural daylight for 10 h per day (08.00-18.00 h). 100 

Whenever the photosynthetic photon flux (PPF) in the daylight compartments fell below 101 

approximately 150 µmol m-2 s-1 (as on cloudy days), an additional 125 µmol quanta m-2 s-1 were 102 

automatically added by high-pressure metal halid lamps (400 W Philips HPI-T). Daylength 103 

extension to 20 h long day (LD) was provided by low intensity light from 70 W incandescent 104 

lamps (c. 7 µmol m-2 s-1 PPF) in such a way that the 4 h dark period was centered around 105 

midnight (22.00 h to 02.00 h). Plants receiving short day (SD) treatment were in the dark from 106 

18.00 h to 08.00 h. The daylength extension light amounted to less than 2% of the total daily light 107 

radiation, the plants thus receiving nearly the same daily light integral in both photoperiods. The 108 

plant trolleys were randomly positioned in the daylight rooms as a result of the every-day 109 

movements to and from the adjacent photoperiodic treatments rooms. Temperatures were 110 

controlled to ±1.0 °C and a water vapour pressure deficit of 530 Pa was maintained at all 111 

temperatures. In order to reduce the bias of runner formation and growth on total dry matter 112 

accumulation and partitioning (Pritts and Worden, 1988), new runners were removed in all 113 

treatments as soon as they appeared throughout the experimental period. 114 

The growth medium used was a 1:1 (v:v) mixture of finely sifted peat-based potting compost 115 

and granulated vermiculite. Throughout the experimental period, the plants were irrigated daily to 116 

drip-off with a complete fertilizer solution consisting of a 2:3 (w:w) mixture of Superba™ Rød 117 

(9-5-25-4% NPKMg + micronutrients) and Calcinit™ (15.5-19% NCa) (Yara International, Oslo, 118 

Norway) with electric conductivity (EC) of 1.0 mS cm-1. Plants were harvested for growth 119 

analysis after 10, 21, and 31 days of cultivation at the respective conditions. In order to reduce 120 

diurnal metabolic changes to a minimum during the day of harvest, all plants to be harvested on a 121 

given day were placed in the dark in a 5 °C cold rom from 08.00 h until harvested. At harvest, the 122 

plants were partitioned into three components: green leaves (lamina and petiole), crowns, and 123 

roots. The plants were removed from the pots and the roots washed clean of soil material and, 124 

after blotting on tissue paper, fresh weight was determined for each component. Total leaf area of 125 

each sample was measured with a LI-COR Inc. Model LI-3000 area meter. Plant material was 126 

then placed loosely in open paper bags and dried in a forced-air drying oven at 100 °C for 60 127 

min, and then further dried to constant weight at 70 °C. The initial heat treatment at 100 °C was 128 
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used to inactivate carbohydrate-degrading enzymes (Acuña-Maldonado and Pritts, 2013). The 129 

dried tissues were ground in a mill (Thomas Wiley® Mini-Mill, A. H. Thomas Co., Scientific 130 

Apparatus, Phila., PA, USA) to pass through a 0.50 mm sieve and stored in vacuo at 4 °C until 131 

analysed. Based on the harvest data, relative growth rate (RGR), net assimilation rate (NAR), and 132 

leaf area ratio (LAR), were calculated as outlined by Evans (1972), using the curve-fitting 133 

computer program of Hunt et al. (2002). The relative leaf area growth rate (RLAGR) was 134 

calculated in the same way as the RGR, except that leaf area data instead of weight data were 135 

used as inputs.   136 

 137 

2.2 Chemical analysis 138 

Soluble sugars. We weighed approx. 100 mg dried plant material into an Eppendorf tube and 139 

extracted soluble carbohydrates with 80% ethanol using an ultrasonic bath (Model USC 200 TH, 140 

VWR, Leuven, Belgium) at 60 °C for 30 min with two repeated extractions with 2 ml each time. 141 

For each extraction, extracts were centrifuged at 15000 rpm/min for 3 min. The supernatants 142 

from the two repeated extractions were combined. The ethanol was completely evaporated from 143 

the supernatant at 60 °C by using a vacuum desiccator (Eppendorf AG 22331, Hamburg, 144 

Germany). Afterwards, we added 2 ml water to the extract and used the ultrasonic bath for 30 145 

min at 60 °C. The extract was centrifuged at 15000 rpm/min for 3 min and the supernatant 146 

filtered through a 0.45 µm GHP membrane filter (Millipore) before chromatography. 147 

The extracts were ran on a High Performance Liquid Chromatograph (Agilent 1200 series of 148 

HPLC, Agilent Technologies, Waldbronn, Germany) with a Refractive Index Detector to separate 149 

and identify soluble sugars. Sugars were separated using a column specialized for separating 150 

carbohydrates (Agilent Hi-Plex Ca USP L19, 4,0 * 250 nm, 8 µm; p/n PL1570-5810). For the 151 

mobile phase, 100% water was used as solvent. The flow rate was 0.3 ml min-1 and the column 152 

temperature was 80 °C. The amount of sugars was determined by comparison with standards of 153 

pure sugars. 154 

Starch. Approx. 200 mg dried plant material was weight into a 15 ml Sarstedt plastic 155 

centrifuge tube. Soluble sugars were extracted as described above and discarded with the 156 

supernatant. Starch in the precipitate were solubilized by adding 2 ml dimethyl sulfoxide and 157 

placing the tube on a boiling water bath for 5 min. Immediately, 2.9 ml MOPS buffer (pH 7) and 158 

0.1 ml thermostable α-amylase (B. licheniformis, Megazyme) was added and the tube was 159 
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incubated 6 min on a boiling water bath. The tube was then placed on a 50 °C water bath and 4 160 

ml sodium acetate buffer (pH 4.5) and 0.1 ml (20 units) amyloglucosidase (A. niger, Megazyme) 161 

was added and the tube was incubated for 30 min at 50 °C. The glucose content after hydrolysis 162 

of starch was analyzed by HPLC as described above. The amount of starch was estimated from 163 

standards of pure starch hydrolyzed together with the plant samples. 164 

Carbon/Nitrogen (C/N) ratio. Total C and N were determined with an Elemental Analyzer 165 

(Flash EA 2000, Thermo Fisher Scientific, Bremen, Germany) in plant tissue samples prepared as 166 

described above. 167 

Chlorophyll concentration was estimated with a Minolta SPAD-502 handheld leaf chlorophyll 168 

meter (Markwell et al., 1995). SPAD values were determined on three leaves of each harvested 169 

plant. 170 

 171 

2.3. Assessment of flowering status 172 

An extra set of plants (3 replicates with 5 plants each) were grown for 31 d at the respective 173 

treatment conditions and then forced for 60 d in a greenhouse under LD conditions at a minimum 174 

temperature of 20 °C for assessment of floral initiation status. Time to anthesis (first open flower) 175 

was recorded by second-daily observations, and the number of inflorescences and the total 176 

number of flowers were recorded in each plant at the end of the forcing period. 177 

 178 

2.4 Experimental design and statistical analysis 179 

The experiment was factorial with a split-plot design with temperatures as main plots and 180 

photoperiods as sub-plots. Each treatment had 3 replicates consisting of 62 plants each at start of 181 

the experiment, positioned on 2 trolleys (one trolley after the second harvest). In each replicate, 182 

11, 8, 6, and 4 plants, respectively, were harvested on days 0, 10, 21, and 31. In addition, 5 plants 183 

remained in each replicate for 31 d for assessment of floral initiation status. 184 

Experimental data were subjected to analysis of variance (ANOVA) by standard procedure 185 

using Mini-Tab® Statistical Software program package (Release 15, Minitab Inc., State College, 186 

PA, USA). Percentage values were always subjected to an arc sin transformation before 187 

performance of the ANOVA. 188 

 189 

3. Results 190 



8 

3.1.  Growth analysis 191 

The results in Fig. 1 demonstrate that total plant dry weight and leaf area increased with 192 

increasing temperature and photoperiod, but usually only after some time lag in the case of 193 

photoperiod. Weight and area increases were exponential versus time, giving a linear time 194 

regression with the natural log (ln), thus rendering the relative growth rate (RGR) constant over 195 

time at each growth condition. (For primary growth data, see Fig. S1). However, due to 196 

adjustment to the new growth conditions, the RGR underwent transitional changes at 12 and 18 197 

°C during the first ten-day growth period (Table 1). For the entire 31-day growth period, there 198 

was a linear increase in the RGR across the 12–24 °C temperature range with a consistent 10 to 199 

13% enhancement by LD at all temperatures (Fig. 2). This was associated with a significant 200 

increase in the NAR with increasing temperature and photoperiod, whereas the LAR was 201 

enhanced by increasing temperature only. 202 

The plants partitioned the greatest share of their production into leaves, and least into 203 

crowns. With increased temperature and extended photoperiod, the plants also allocated a greater 204 

share of their dry matter production into leaves and less into crowns and roots (Table 2). Because 205 

of this, the final shoot to root ratio increased markedly with increasing temperature and 206 

photoperiod (Table 1). This LD enhancement effect increased slightly with increasing 207 

temperature. Since the experiment was started with freshly rooted cuttings with small roots, the 208 

shoot/root ratio fell off sharply as root formation and growth continued in the successive 209 

harvests. The proportional sizes of shoots and roots after 31 d of growth under the various 210 

environmental conditions are illustrated in Fig. 3. 211 

 212 

3.2 Plant carbon/nitrogen (C/N) ratio 213 

The results in Table 3 show that the C/N ratio of the plant tissues increased significantly with 214 

increasing temperature and photoperiod in all plant parts. Generally, the ratio was lowest in the 215 

roots and highest in crowns. These effects were brought about by changes in both C and N 216 

concentrations. While C concentrations were higher in LD than in SD, it was not significantly 217 

affected by temperature. On the other hand, N concentrations decreased significantly by increases 218 

in both temperature and photoperiod. Tissue concentrations also varied significantly between the 219 

various plant parts; C concentrations were higher in leaves and crowns than in roots, while the 220 

opposite situation was found for N concentrations. 221 
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 222 

3.3. Nonstructural carbohydrate composition 223 

The starch concentration increased with decreasing temperatures in all parts of the plants and 224 

was further enhanced by LD conditions (Table 4). The three-way ANOVA also revealed highly 225 

significant two- and three-factor interactions of temperature, photoperiod and plant part on the 226 

starch content. Sucrose concentration was also highest at low temperatures in leaves and 227 

increased in plants grown under LD conditions, especially in crowns and roots. Glucose 228 

concentrations likewise increased with increasing temperature and LD conditions, while there 229 

were no significant effects of photoperiod or temperature on the fructose levels. At low and 230 

intermediate temperature, starch concentration was higher in crowns and roots than in leaves, but 231 

this was reversed at the highest temperature, whereas the concentrations of each of the sugars 232 

were always highest in the leaves (Table 4). While the concentration of starch and sucrose 233 

decreased with temperature in all plant parts, the concentration of the hexoses increased 234 

somewhat. The sum of sugars was enhanced by LD conditions. 235 

 236 

3.4. Chlorophyll concentration 237 

Chlorophyll concentration as assayed by the SPAD chlorophyll meter, increased strongly 238 

with the progress of growth and development, and at the same time, the effects of temperature 239 

and photoperiod became clearly visible (Fig. 4). At the final harvest, chlorophyll concentration 240 

was consistently higher in SD than in LD, the differences decreasing with decreasing 241 

temperature. Under SD conditions, chlorophyll concentration was highest at 18 °C, whereas in 242 

LD the concentration decreased steadily with increasing temperature across the entire 243 

temperature range. 244 

 245 

3.5. Flowering 246 

Forcing of plants exposed to the various growing conditions for 31 d showed that all plants at 247 

12 and 18 °C and 80% of those at 24 °C had initiated flowers in SD, whereas none had initiated 248 

flowers in LD regardless of temperature conditions (Table 5). The plants from 12 and 18 °C 249 

started flowering simultaneously after 5 weeks of forcing, while those from 24 °C were delayed 250 

for an additional 14 d. While the number of inflorescences per plant was little affected by 251 

temperature, the number of flowers per inflorescence increased consistently across the range of 252 



10 

temperatures, resulting in an increasing number of flowers per plant. Flowering was associated 253 

with increased crown branching under SD conditions, with an optimum at 18 °C. The number of 254 

runners formed during the forcing period increased significantly with increasing temperature in 255 

the plants raised under SD conditions, while there was no such after-effect of temperature in 256 

plants grown under LD conditions. Because of this interaction of temperature and photoperiod, 257 

there was no significant main after-effect of photoperiod on runner formation (Table 5). 258 

 259 

4. Discussion 260 

The demonstrated increases in both total dry matter production and leaf area of young 261 

strawberry plants with increasing temperature and photoperiod (Fig. 1) are in accordance with the 262 

results obtained under field conditions by Olsen et al. (1985). An exponential increase in dry 263 

matter accumulation, as revealed by a linear increase in the natural log (ln) of dry matter versus 264 

time, rendered the RGR constant over time at each growth condition (Table 1). The same growth 265 

parameter relations were found by Olsen et al. (1985) in the genotype they used, and in three out 266 

of seven genotypes used by Pritts and Proctor (1988a), even though these results referred to the 267 

first fruiting year. Genotype differences in growth rhythm and /or fruiting and runnering 268 

characteristics might have precluded the same response in the other genotypes. 269 

The maximum RGR of 0.077 g/g/day obtained in LD at 24 °C is comparable with the 270 

maximum RGR of 0.044 g/g/day obtained in the establishment year under field conditions at 271 

midsummer by Olsen et al. (1985). The use of small plants with minimal leaf shading is probably 272 

the main reason for the superior growth rate in the present experiment. A temperature optimum of 273 

24 °C for dry matter production in strawberry is higher than the 18 °C optimum previously 274 

reported by Heide (1977). The reason for this discrepancy is probably the superior light 275 

conditions during spring and early summer in the present experiment compared with autumn 276 

conditions in the former. The results confirm the profound effect of low temperature and SD on 277 

the reduction of growth rate as an early event in the sequence of processes (the autumn 278 

syndrome) associated with autumn preparation in strawberry plants. 279 

The growth analysis demonstrated that enhancement of the RGR at high temperature was 280 

driven by a combined increase in the net assimilation rate (NAR) and the leaf area ratio (LAR), 281 

whereas the LD enhancement was driven by an increase only in the NAR (Fig. 2). Nevertheless, 282 

the relative leaf area growth rate (RLAGR) was enhanced by LD, indicating a specific leaf area 283 
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growth effect also of photoperiod. Possibly, the adjustment changes following transition to the 284 

new conditions may, to some extent, have masked the over-all effect for the entire growth period. 285 

Whatever the explanation, it is clear that the driving forces of growth enhancement by 286 

temperature and daylength differs greatly in strawberry plants compared with temperate perennial 287 

grasses. In the latter, a remarkable increase in LAR was the main driving force of the large 288 

increase in RGR and dry matter production under LD conditions observed in the grasses without 289 

simultaneous changes in the daily light energy (Hay and Heide, 1983; Heide et al., 1985; Hay, 290 

1990; Solhaug, 1991). Despite the different driving force mechanisms involved, the shoot/root 291 

ratio increased strongly under high temperature and long day conditions in both plant types. 292 

The results confirmed the prominent effect of low temperature on the accumulation of starch 293 

previously reported for strawberry roots and crowns (Bringhurst et al., 1960; López et al., 2002). 294 

It is well documented that such an accumulation of starch in autumn is an important step in the 295 

natural winter preparation of strawberry plants and a prerequisite for successful overwintering or 296 

artificial cold storage and good transplant results (Lieten et al., 1995; López et al., 2002). It was 297 

therefore, rather surprising that accumulation of starch at low temperature was enhanced by LD 298 

conditions (Table 4). A possible explanation could be that the 31 d experimental period might not 299 

have been long enough to fully establish the daylength effects. Predominant accumulation of all 300 

individual sugars in leaves, and an increasing concentrations of glucose under high temperature 301 

and LD conditions (and of sucrose in LD), is consistent with an increased sugar availability under 302 

growth-promoting conditions. On the other hand, low temperature accumulation of starch in roots 303 

and crowns is compatible with an alternative sugar utilization for storage when growth is reduced 304 

at low temperature. Starch accumulation appears to be an important component of the autumn 305 

syndrome in strawberry plants (Guttridge, 1985). The elevated leaf chlorophyll concentrations 306 

detected under low temperature and SD conditions (Fig. 4), where dry matter production was 307 

least, demonstrate that other factors than leaf chlorophyll concentration were limiting 308 

photosynthesis and dry matter accumulation in strawberry plants. 309 

The observed marked effects of climate on growth and chemical composition of the 310 

strawberry plant have important practical implications for commercial strawberry production. 311 

The results demonstrate that for the early establishment and raising period, long photoperiods and 312 

temperatures of about 24 °C are optimal for growth and dry matter accumulation of strawberry 313 

plants. However, because such conditions result in plants with a high shoot/root ratio and low 314 
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root starch content, conditions must later be changed to low temperature (<10 °C) and SD 315 

conditions to ensure floral induction and development of plants with large and strong roots with 316 

high starch content. This has proved vital for cold storage and/or transplanting successes of 317 

strawberry planting material (Bringhurst et al., 1960, López et al., 2002). In Mediterranean 318 

climates with high summer temperatures, high elevation nurseries are, therefore, commonly used 319 

for raising of such ideal “waiting-bed” plants (López et al., 2002). In North America, strawberry 320 

plants raised under diurnally fluctuating temperatures with cool nights, were similarly shown to 321 

exhibit so-called Northern vigour (Tanino et al., 2006; Tanino and Wang, 2008). 322 

The flowering data in Table 5 show that the strawberry cultivar ‘Sonata’ actually has an 323 

obligatory SD requirement for initiation of flower primordia. While most June-bearing cultivars, 324 

especially those of high-latitude origin, are facultative SD plants that initiate flowers also under 325 

LD conditions if the temperature is low (Guttridge, 1985; Heide, 1977), it has been demonstrated 326 

that some cultivars such as ‘Senga Sengana’, ‘Elsanta’, and ‘Korona’ lack this characteristic 327 

(Heide et al. 2013). The present results demonstrate that also ‘Sonata’ belongs to this group of 328 

obligatory SD plants. The elevated tissue C/N ratio observed under non- inductive LD and high 329 

temperature conditions (Table 3) is in direct contrast with the old notion by Kraus and Kraybill 330 

(1918), that a high tissue C/N ratio should be generally conducive to floral initiation. While sugar 331 

accumulation in the apical bud has been associated with floral transition in photoperiodic plants 332 

in general (Bernier et al., 1993), and in strawberry specifically (Eshghi et al., 2007), the present 333 

sugar analyses did not indicate any specific mediation of sugars in photoperiod and temperature 334 

induction of flowering in the strawberry. 335 
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Table 1 

Relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio, (LAR), and Shoot/Root 

ratio of young strawberry plants as affected by photoperiod and temperature during successive 

growth periods.  

Period 

(days) 

Temperature 

(°C) 

Photoperiod 

(h) 

RGR 

(g/g/day) 

NAR 

(mg/cm2/day) 

LAR 

(cm2 mg-1) 

Shoot/Root 

ratio 

0-10 12 10 0.069 0.65 0.109 12.4 

  20 0.061 0.57 0.110 13.7 

       

0-21  10 0.046 0.48 0.101   6.3 

  20 0.046 0.45 0.109   5.7 

       

0-31  10 0.046 0.56 0.090   2.8 

  20 0.051 0.62 0.090   3.9 

       

0-10 18 10 0.071 0.63 0.115   9.4 

  20 0.080 0.72 0.114 10.5 

       

0-21  10 0.060 0.59 0.107   4.8 

  20 0.069 0.73 0.101   5.7 

       

0-31  10 0.057 0.64 0.100   3.7 

  20 0.066 0.70 0.102   4.7 

       

0-10 24 10 0.060 0.45 0.136 10.6 

  20 0.067 0.56 0.116 13.2 

       

0-21  10 0.067 0.56 0.122   6.7 

  20 0.071 0.64 0.116   8.8 

       

0-31  10 0.069 0.68 0.107   4.5 

  20 0.077 0.78 0.105   6.5 
       

Probability level of significance (ANOVA)*     

Source of variation       

Temperature (A)   <0.001 <0.001 0.04 0.001 

Photoperiod (B)   <0.001 <0.001 n.s. 0.003 

A x B   n.s. n.s. n.s. n.s. 

Data are the means of three biological replicates. 

* ANOVA for the period 0-31 days 

n.s. - not significant.  
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Table 2 

Effects of temperature and photoperiod on partitioning of dry matter production in young 

strawberry plants. 

Temperature Photoperiod  % dry matter   

(°C) (h) Leaves Crowns Roots 

12 10 61.5 12.0 26.6 

 20 68.8 10.6 20.6 

Mean  65.2 11.3 23.6 

     

18 10 70.6   8.0 21.4 

 20 73.9   8.1 18.0 

Mean  72.3   8.1 19.7 

     

24 10 75.1   6.7 18.2 

 20 80.3   6.1 13.5 

Mean  77.7   6.4 15.9 

     

Probability level of significance (ANOVA)   

Source of variation     

Temperature (A)  0.001 <0.001 0.004 

Photoperiod (B)  <0.001 n.s. <0.001 

A x B  n.s. n.s. n.s. 

Data are for the final harvest and represent the means of three biological replicates. 

n.s. - not significant.  
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Table 3 

Effects of temperature and photoperiod on tissue concentrations (mg g-2 DW) of carbon (C) and 

nitrogen (N), and the C/N ratio in young strawberry plants after 31 days of cultivation at the 

respective conditions. 

Temperature (°C) Photoperiod (h) Plant part  C  N C/N-ratio 

12 10 Leaves 44.6 2.5 17.6 

  Crown 43.7 2.3 19.1 

  Root 41.4 3.3 12.7 

 Mean  43.3 2.7 16.4 

      

 20 Leaves 45.3 2.3 19.9 

  Crown 44.6 2.3 19.2 

  Root 42.3 3.4 12.7 

 Mean  44.1 2.7 17.3 

      

18 10 Leaves 43.9 2.8 15.5 

  Crown 44.1 2.1 20.5 

  Root 41.3 3.5 11.7 

 Mean  43.1 2.8 15.9 

      

 20 Leaves 45.0 2.3 19.2 

  Crown 44.1 2.0 22.2 

  Root 41.7 3.7 11.3 

 Mean  43.6 2.7 17.6 

      

24 10 Leaves 44.3 2.8 15.9 

  Crown 42.5 2.1 20.0 

  Root 42.4 3.1 13.9 

 Mean  43.1 2.7 16.6 

      

 20 Leaves 44.6 2.1 21.1 

  Crown 43.0 1.9 22.8 

  Root 42.6 3.0 14.3 

 Mean  43.4 2.3 19.4 

      

Probability level of significance (ANOVA)     

Source of variation     

Temperature (A)   n.s. 0.003 0.01 

Photoperiod (B)   0.03 0.047 0.005 

A x B   n.s. n.s. n.s. 

Plant part (C)   <0.001 <0.001 <0.001 

A x C   <0.001 <0.001 <0.001 

B x C   n.s. <0.001 <0.001 

A x B x C   n.s. n.s. n.s. 

Data are the means of three biological replicates, each with four plants per treatment. 

n.s. - not significant.
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Table 4 

Effects of temperature and photoperiod on tissue concentrations (mg g-2 DW) of non-structural carbohydrates (starch and sugars) in 

young strawberry plants after 31 days of cultivation at the respective conditions. 

Temperature (°C) Photoperiod (h) Plant part Starch Sucrose Glucose Fructose Total sugars 

12 10 Leaves   5.9 4.5 4.9 4.4 13.7 

  Crown 10.1 2.6 1.9 2.2   6.6 

  Root 11.2 1.9 2.1 2.3   6.3 

 Mean    9.1 3.0 2.9 3.0   8.9 
        

 20 Leaves 11.7 5.6 5.7 4.5 15.9 

  Crown 13.1 2.9 2.5 2.7   8.1 

  Root 11.5 2.6 2.5 2.3   7.4 

 Mean  12.1 3.7 3.6 3.2 10.5 
        

18 10 Leaves   4.7 3.6 5.1 4.4 13.1 

  Crown   5.4 2.2 3.2 3.1   8.5 

  Root   8.1 1.6 2.2 2.5   6.3 

 Mean    6.1 2.5 3.5 3.3   9.3 
        

 20 Leaves   6.7 3.6 6.5 5.6 15.7 

  Crown   7.3 4.1 3.8 2.7 10.6 

  Root   7.5 2.4 2.3 2.3   7.0 

 Mean    7.1 3.4 4.2 3.5 11.1 
        

24 10 Leaves   4.5 3.0 6.2 5.3 14.5 

  Crown   2.4 1.5 2.9 2.8   7.2 

  Root   3.5 2.1 2.8 2.5   7.4 

 Mean    3.5 2.2 4.0 3.6   9.7 
        

 20 Leaves   4.6 2.2 7.3 5.8 15.3 

  Crown   4.0 4.0 3.0 2.9   9.9 

  Root   3.2 2.3 3.3 2.6   8.1 

 Mean    3.9 2.8 4.5 3.8 11.1 



20 

        

Probability level of significance (ANOVA)       

Source of variation        

Temperature (A)   0.001 0.05 0.03 n.s. n.s. 

Photoperiod (B)   0.002 0.008 0.01 n.s. 0.004 

A x B   0.03 n.s. n.s. n.s. n.s. 

Plant part (C)   <0.001 <0.001 <0.001 <0.001 <0.001 

A x C   <0.001 0.004 n.s. n.s. n.s. 

B x C   <0.001 0.03 n.s. n.s. n.s. 

A x B x C   <0.001 0.05 n.s. n.s. n.s. 

Data are the means of three biological replicates, each with four plants per treatment. 

n.s. - not significant. 
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Table 5 

Effects of temperature and photoperiod on flowering in ‘Sonata’ strawberry plants. The plants 

were exposed to the respective conditions for 31 days and then immediately forced in 20 h LD at 

20°C for 60 days. 

 

Photoperiod 

(h) 

Temp- 

erature 

(°C) 

Flowering 

plants 

(%) 

Days 

to 

anthesis 

No. of 

infloresc. 

plant-1 

No. of 

flowers 

plant-1 

 

Flowers 

infloresc.-1 

No. of 

crowns 

plant-1 

No. of 

runners 

plant-1 

10 12 100 30.3 1.5 17.4 11.9 3.1 3.8 

 18 100 28.3 2.3 27.0 12.5 3.7 6.2 

 24   80 45.8 1.5 31.3 22.9 3.1 9.7 

Mean    93 34.1 1.8 25.4 15.3 3.3 6.3 

         

20 12    0    - 0 0   - 2.7 6.5 

 18    0    - 0 0   - 1.2 6.5 

 24    0    - 0 0   - 1.1 6.0 

Mean     0    - 0 0   - 1.7 6.3 

          

Probability level of significance (ANOVA)     

Source of variation         

Temperature (A)  <0.001 <0.001 0.05 0.01 0.006 n.s. 0.001 

Photoperiod (B)  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 n.s. 

A x B  <0.001 <0.001 0.05 n.s. 0.001 0.003 0.001 

Data are the means of three replicates, each with five plants in each treatment. 

n.s. - not significant.  
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FIGURE CAPTIONS 

 

Fig. 1.  Linear regressions for the natural log (ln) of total dry weight and leaf area increases 

versus time as influenced by temperature and photoperiod in young ‘Sonata’ strawberry plants. 

The data represent the results of an experiment with three biological replicates, each with four 

plants per treatment. 

 

Fig. 2. Growth analysis parameters for young strawberry plants grown in 10 h (SD, filled symbols) 

and 20 h (LD, open symbols) photoperiods at temperatures of 12, 18 and 24 h. The results represent 

growth over the entire 31-day growth period. Values are means ±SE of three biological replicates, 

each with four plants per treatment. 

 

Fig. 3. Appearance of young strawberry plants after 31 days of cultivation in 10 h SD and 20 h LD 

and temperatures of 12, 18 and 24 °C as indicated. 

 

Fig. 4. Time course changes in chlorophyll concentrations in leaves of young strawberry plants 

estimated with the Minolta SPAD-502 chlorophyll meter. Values are means of three biological 

replicates and represent the means of measurements on three leaves of each harvested plant. The 

vertical bars represent ±SE of the means. 

 

SUPPLEMENTARY MATERIAL 

Fig. S1. Time courses of total leaf area and dry weight increments in young strawberry plants 

grown in 10 h (SD, filled symbols) and 20 h (LD, open symbols) photoperiods at temperatures of 

12, 18 and 24 °C as indicated. Values are means ±SE of three biological replicates. 

 

  



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.

y = 0.073x - 1.1214

R² = 0.9976

y = 0.08x - 1.2081

R² = 0.9972

-1

0

1

2

3

0 10 21 31L
n
 T

o
ta

l 
d
ry

 w
ei

g
h
t 

(g
 p

la
n
t-1

)

Time (days)

24 °C

y = 0.059x - 0.8872

R² = 0.9929

y = 0.067x - 0.9768

R² = 0.9939

-1

0

1

2

3

0 10 21 31L
n
 T

o
ta

l 
d
ry

 w
ei

g
h
t 

(g
 p

la
n
t-1

)

Time (days)

18 °C

y = 0.045x - 0.7119

R² = 0.964

y = 0.052x - 0.8457

R² = 0.99

-1

0

1

2

3

0 10 21 31L
n
 T

o
ta

l 
d
ry

 w
ei

g
h
t 

(g
 p

la
n
t-1

)

Time (days)

12 °C

y = 0.0619x + 3.928

R² = 0.9843

y = 0.0693x + 3.7504

R² = 0.9995

4

5

6

7

0 10 21 31

L
n

 L
ea

f 
ar

ea
 (

cm
-2

p
la

n
t-1

)

Time (days)

24 °C

y = 0.0431x + 4.1013

R² = 0.9799

y = 0.054x + 3.9594

R² = 0.9876

4

5

6

7

0 10 21 31

L
n
 L

ea
f 

ar
ea

 (
cm

-2
p
la

n
t-1

)

Time (days)

18 °C

y = 0.024x + 4.3049

R² = 0.915

y = 0.032x + 4.1712

R² = 0.9884

4

5

6

7

0 10 21 31

L
n
 L

ea
f 

ar
ea

 (
cm

-2
p
la

n
t-1

)

Time (days)

12 °C



24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 

  

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

12 18 24

R
L

A
G

R
 (

cm
-2

cm
-2

d
ay

-1
)

R
G

R
 (

g
-1

g
-1

d
ay

-1
)

Temperature (°C)

0-31 days

RLAGR

RGR

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.8

12 18 24

L
A

R
 (

cm
2

m
g

-1
)

N
A

R
 (

m
g
 c

m
-2

d
ay

-1
)

Temperature (°C)

0-31 days

NAR

LAR



25 

 

Fig. 3.  
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