54 research outputs found

    Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved

    Get PDF
    Transcripts for two genes expressed early in alfalfa nodule development (MsENOD40 and MsENOD2) are found in mycorrhizal roots, but not in noncolonized roots or in roots infected with the fungal pathogen Rhizoctonia solani. These same two early nodulin genes are expressed in uninoculated roots upon application of the cytokinin 6-benzylaminopurine. Correlated with the expression of the two early nodulin genes, we found that mycorrhizal roots contain higher levels of trans-zeatin riboside than nonmycorrhizal roots. These data suggest that there may be conservation of signal transduction pathways between the two symbioses-nitrogen-fixing nodules and phosphate-acquiring mycorrhizae

    Bilateral Assessment of Functional Tasks for Robot-assisted Therapy Applications

    Get PDF
    This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks

    Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym

    Get PDF
    Background Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. Methods A typical group of stroke patients was randomly allocated to an intervention (n = 10) or a control group (n = 10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (n = 10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. Results No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the control group. On the Time Up and Go Test, no statistically significant differences were observed pre- and post-intervention when comparing the control and the intervention groups. For the 6 Minute Walk Test, both groups presented a statistically significant difference pre- and post-intervention, showing progress in their performance. The robot gym therapy was more cost-effective than the traditional one-to-one therapy used during this study in that it enabled therapist to train up to 1.5 to 6 times more patients for the approximately same cost in the long term. Conclusions The results of this study showed that the patients that received therapy using the Robot Gym had enhanced functionality in the upper extremity tests similar to patients in the control group. In the lower extremity tests, the intervention patients showed more improvement than those subjected to traditional therapy. These results support that the Robot Gym can be as effective as traditional therapy for stroke patients, presenting a more cost- and labor-efficient option for countries with scarce clinical resources and funding. Trial registration ISRCTN98578807

    Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation

    Get PDF
    BACKGROUND: There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. METHODS: Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. RESULTS: Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. CONCLUSION: The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home

    Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks**

    Get PDF
    BACKGROUND: Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER) was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL) training (motivation and functional task practice with real objects), with the benefits of robot mediated therapy (repeatability and reliability). In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. METHODS: Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY) and the saggital plane of torso (XZ) were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. RESULTS: We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup reach showed more curvature than in the object imagined and absent conditions. Curvature in the XZ plane of movement was greater than curvature in the XY plane for all movements. CONCLUSION: The implemented minimum jerk trajectory model was not adequate for generating functional trajectories for these ADLs. The deviations caused by object affordance and functional task constraints must be accounted for in order to allow subjects to perform functional task training in robotic therapy environments. The major differences that we have highlighted include trajectory dependence on: object presence, object orientation, and the plane of movement. With the ability to practice ADLs on the ADLER environment we hope to provide patients with a therapy paradigm that will produce optimal results and recovery

    Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE).

    Get PDF
    PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.Core funding for this project was provided by the National Institutes of Health (R01-CA172404, PI: S.J. Ramus; and R01-CA168758, PIs: J.A. Doherty and M.A.Rossing), the Canadian Institutes for Health Research (Proof-of-Principle I program, PIs: D.G.Huntsman and M.S. Anglesio), the United States Department of Defense Ovarian Cancer Research Program (OC110433, PI: D.D. Bowtell). A. Talhouk is funded through a Michael Smith Foundation for Health Research Scholar Award. M.S. Anglesio is funded through a Michael Smith Foundation for Health Research Scholar Award and the Janet D. Cottrelle Foundation Scholars program managed by the BC Cancer Foundation. J. George was partially supported by the NIH/National Cancer Institute award number P30CA034196. C. Wang was a Career Enhancement Awardee of the Mayo Clinic SPORE in Ovarian Cancer (P50 CA136393). D.G. Huntsman receives support from the Dr. Chew Wei Memorial Professorship in Gynecologic Oncology, and the Canada Research Chairs program (Research Chair in Molecular and Genomic Pathology). M. Widschwendter receives funding from the European Union’s Horizon 2020 European Research Council Programme, H2020 BRCA-ERC under Grant Agreement No. 742432 as well as the charity, The Eve Appeal (https://eveappeal.org.uk/), and support of the National Institute for Health Research (NIHR) and the University College London Hospitals (UCLH) Biomedical Research Centre. G.E. Konecny is supported by the Miriam and Sheldon Adelson Medical Research Foundation. B.Y. Karlan is funded by the American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. H.R. Harris is 20 supported by the NIH/National Cancer Institute award number K22 CA193860. OVCARE (including the VAN study) receives support through the BC Cancer Foundation and The VGH+UBC Hospital Foundation (authors AT, BG, DGH, and MSA). The AOV study is supported by the Canadian Institutes of Health Research (MOP86727). The Gynaecological Oncology Biobank at Westmead, a member of the Australasian Biospecimen Network-Oncology group, was funded by the National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 & 15/RIG/1-16. The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC; ID199600; ID400413 and ID400281). BriTROC-1 was funded by Ovarian Cancer Action (to IAM and JDB, grant number 006) and supported by Cancer Research UK (grant numbers A15973, A15601, A18072, A17197, A19274 and A19694) and the National Institute for Health Research Cambridge and Imperial Biomedical Research Centres. Samples from the Mayo Clinic were collected and provided with support of P50 CA136393 (E.L.G., G.L.K, S.H.K, M.E.S.)

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore