61 research outputs found
Single gene mutation in a plant MYB transcription factor causes a major shift in pollinator preference.
Understanding the molecular basis of reproductive isolation and speciation is a key goal of evolutionary genetics. In the South American genus Petunia, the R2R3-MYB transcription factor MYB-FL regulates the biosynthesis of UV-absorbing flavonol pigments, a major determinant of pollinator preference. MYB-FL is highly expressed in the hawkmoth-pollinated P. axillaris, but independent losses of its activity in sister taxa P. secreta and P. exserta led to UV-reflective flowers and associated pollinator shifts in each lineage (bees and hummingbirds, respectively). We created a myb-fl CRISPR mutant in P. axillaris and studied the effect of this single gene on innate pollinator preference. The mutation strongly reduced the expression of the two key flavonol-related biosynthetic genes but only affected the expression of few other genes. The mutant flowers were UV reflective as expected but additionally contained low levels of visible anthocyanin pigments. Hawkmoths strongly preferred the wild-type P. axillaris over the myb-fl mutant, whereas both social and solitary bee preference depended on the level of visible color of the mutants. MYB-FL, with its specific expression pattern, small number of target genes, and key position at the nexus of flavonol and anthocyanin biosynthetic pathways, provides a striking example of evolution by single mutations of large phenotypic effect
Genetic architecture of a pollinator shift and its fate in secondary hybrid zones of two Petunia species.
BACKGROUND
Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta.
RESULTS
Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones.
CONCLUSIONS
Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection
Does Variation in Genome Sizes Reflect Adaptive or Neutral Processes? New Clues from Passiflora
One of the long-standing paradoxes in genomic evolution is the observation that much of the genome is composed of repetitive DNA which has been typically regarded as superfluous to the function of the genome in generating phenotypes. In this work, we used comparative phylogenetic approaches to investigate if the variations in genome sizes (GS) should be considered as adaptive or neutral processes by the comparison between GS and flower diameters (FD) of 50 Passiflora species, more specifically, within its two most species-rich subgenera, Passiflora and Decaloba. For this, we have constructed a phylogenetic tree of these species, estimated GS and FD of them, inferred the tempo and mode of evolution of these traits and their correlations, using both current and phylogenetically independent contrasted values. We found significant correlations among the traits, when considering the complete set of data or only the subgenus Passiflora, whereas no correlations were observed within Decaloba. Herein, we present convincing evidence of adaptive evolution of GS, as well as clues that this pattern is limited by a minimum genome size, which could reduce both the possibilities of changes in GS and the possibility of phenotypic responses to environment changes
Diversification in the South American Pampas: the genetic and morphological variation of the widespread Petunia axillaris complex (Solanaceae)
Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately,interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P. a. axillaris, P. a. parodii and P. a. subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P. axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100 000 years, which is compatible with a divergence time between 35 000 and 107 000 years ago between P. a. axillaris and P. a. parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P. a. axillaris and P. a. parodii in their contact zone.Fil: Turchetto, Caroline. Universidade Federal Do Rio Grande Do Sul; Brasil;Fil: Fagundes, Nelson J. R.. Universidade Federal Do Rio Grande Do Sul; Brasil;Fil: Segatto, Ana L. A.. Universidade Federal Do Rio Grande Do Sul; Brasil;Fil: Kuhlemeier, Cris. Institute of Plant Science; Suiza;Fil: Solis Neffa, Viviana Griselda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Botánica del Nordeste (i); ArgentinaFil: Speranza, Pablo R. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Botánica del Nordeste (i); ArgentinaFil: Bonatto, Sandro L.. Pontificia Universidade Catolica Do Rio Grande Do Sul; Brasil;Fil: Freitas, Loreta B.. Universidade Federal Do Rio Grande Do Sul; Brasil
The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)
The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora
Taxonomy and evolutionary relationships of Passiflora subg. Decaloba supersect. Decaloba sect. Xerogona (Passifloraceae): contributions of palynological, morphological and molecular studies
Passiflora subg. Decaloba supersect. Decaloba sect. Xerogona (Passifloraceae) is a tropical and subtropical group comprising 14 species that occur in tropical biomes throughout Latin America, including the Atlantic Forest. The section Xerogona comprises herbaceous vines characterized by a lack of petiole glands on their leaves, of bracts and of ocelli on their leaf blades, as well as by their capsular fruits. We analyzed the phylogeny on the basis of morphological characters (including pollen characters) and molecular data. The inferred phylogeny was used in order to characterize, circumscribe and delimit the section and the species. We examined the phylogenetic relationships among the species, evaluating the circumscription of the section on the basis of the trnL-trnF intergenic spacer region of chloroplast DNA and the internal transcribed spacer region of nuclear ribosomal DNA. We constructed phylogenetic trees on the basis of the morphological and molecular data. We found that P. subg. Decaloba supersect. Decaloba sect. Xerogona appears to be monophyletic only in the molecular analyses. The phylogenetic analyses performed here also indicated that P. subg. Decaloba is monophyleti
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
- …