63 research outputs found
Direct Profiling the Post-Translational Modification Codes of a Single Protein Immobilized on a Surface Using Cu-free Click Chemistry
Combinatorial post-translational modifications (PTMs), which can serve as dynamic molecular barcodes, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways. Copyright © 2018 American Chemical Societ
Theory of Magnetic Field Induced Spin Density Wave in High Temperature Superconductors
The induction of spin density wave (SDW) and charge density wave (CDW)
orderings in the mixed state of high superconductors (HTS) is
investigated by using the self-consistent Bogoliubov-de Gennes equations based
upon an effective model Hamiltonian with competing SDW and d-wave
superconductivity interactions. For optimized doping sample, the modulation of
the induced SDW and its associated CDW is determined by the vortex lattice and
their patterns obey the four-fold symmetry. By deceasing doping level, both SDW
and CDW show quasi-one dimensional like behavior, and the CDW has a period just
half that of the SDW along one direction. From the calculation of the local
density of states (LDOS), we found that the majority of the quasi-particles
inside the vortex core are localized. All these results are consistent with
several recent experiments on HTS
Recommended from our members
Momentum dependent dxz/yz band splitting in LaFeAsO
The nematic phase in iron based superconductors (IBSs) has attracted attention with a notion that it may provide important clue to the superconductivity. A series of angle-resolved photoemission spectroscopy (ARPES) studies were performed to understand the origin of the nematic phase. However, there is lack of ARPES study on LaFeAsO nematic phase. Here, we report the results of ARPES studies of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the Γ and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the Γ and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the Γ point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors
Competition of Superconductivity and Antiferromagnetism in a d-Wave Vortex Lattice
The d-wave vortex lattice state is studied within the framework of
Bogoliubov-de Gennes (BdG) mean field theory. We allow antiferromagnetic (AFM)
order to develop self-consistently along with d-wave singlet superconducting
(dSC) order in response to an external magnetic field that generates vortices.
The resulting AFM order has strong peaks at the vortex centers, and changes
sign, creating domain walls along lines where .
The length scale for decay of this AFM order is found to be much larger than
the bare d-wave coherence length, . Coexistence of dSC and AFM order in
this system is shown to induce -triplet superconducting order. Competition
between different orders is found to suppress the local density of states at
the vortex center and comparison to recent experimental findings is discussed.Comment: 10 pages, 7 figure
Analysis and prevention of dent defects formed during strip casting of twin-induced plasticity steels
Rapid-solidification experiments were conducted for understanding dent defects formed during strip casting of twin-induced plasticity (TWIP) steels. The rapid-solidification experiments reproduced the dent defects formed on these steels, which were generally located at valleys of the shot-blasted roughness on the substrate. The rapid-solidification experiment results reveal that the number of dips, the Mn content of the steel, and the surface roughness of the substrate affect the depth and size of dents formed on the solidified-shell surfaces, while the composition of the atmosphere gases and the carbon content of the steel are not factors. The formation of dents was attributed to the entrapment of gases inside the roughness valleys of the substrate surface and their volume expansion due to the temperature of the steel melt and the latent heat. The dents could be prevented when the thermal expansion of gases was suppressed by making longitudinal grooves on the substrate surface, which allowed the entrapped gases to escape. Sound solidified shells were obtained by optimizing the width and depth of the longitudinal grooves and by controlling the shot-blasting conditions.ope
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Switchable polarity in polymer solar cells using conjugated polyelectrolyte
We report polarity-switchable polymer solar cells that use poly [(9,9-bis((6???-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9, 9-bis(2-(2-(2-methoxy-ethoxy)ethoxy)ethyl)-9-fluorene))dibromide polyelectrolyte (WPF-6-oxy-F). By introducing WPF-6-oxy-F as a polarity-controlling layer, we selectively achieved polarity switching in the device operation. When we deposited the WPF-6-oxy-F film on the top of an active polymer layer, the device operated conventionally; holes moved to the transparent indium tin oxide (ITO) electrode. However, the device showed switched polarity when we changed the position of insertion of the WPF-6-oxy-F film to the top of the transparent ITO electrode. Then, the electrons moved to the transparent ITO electrode, leading to an inverted device.close
Effects of blood contamination on microtensile bond strength to dentin of three self-etch adhesives
This study evaluated the effects of blood contamination and decontamination methods during diff챕rent steps of bonding procedures on the microtensile bond strength of two-step self-etch adhesives to dentin. Sixty extracted human molars were ground flat to expose occlusal dentin. The 60 molars were randomly assigned to three groups, each treated with a different twostep self-etch adhesive: Clearfil SE Bond, AdheSE and Tyrian SPE. In turn, these groups were subdivided into five subgroups (n=20), each treated using different experimental conditions as follows: control group-no contamination; contamination group 1-CG1: primer application/ contamination/primer re-application; contamination group 2-CG2: primer application/contamination/wash/dry/primer re-application; contamination group 3-CG3: primer application/adhesive application/light curing/contamination/ adhesive re-application/light curing; contamination group 4-CG4: primer application/adhesive application/light curing/contamination/wash/ dry/adhesive re-application/light curing. Composite buildup was performed using Z250. After 24 hours of storage in distilled water at 37째C, the bonded specimens were trimmed to an hourglass shape and serially sectioned into slabs with 0.6 mm 2 cross-sectional areas. Microtensile bond strengths (MTBS) were assessed for each specimen using a universal testing machine. The data were analyzed by two-way ANOVA followed by a post hoc LSD test. SEM evaluations of the fracture modes were also performed. The contaminated specimens showed lower bond strengths than specimens in the control group (p<0.05), with the exception of CG1 in the Clearfil SE group and CG2 and CG3 in the Tyrian SPE group. Among the three self-etch adhesives, the Tyrian SPE group exhibited a significantly lower average MTBS compared to the Clearfil SE Bond and AdheSE (p<0.05) groups. Based on the results of the current study, it was found that blood contamination reduced the MTBS of all three self-etch adhesives to dentin, and water-rinsing was unable to overcome the effects of blood contamination.
- …