59 research outputs found

    Monoclonal Antibody Dimers Induced by Low pH, Heat, or Light Exposure Are Not Immunogenic Upon Subcutaneous Administration in a Mouse Model

    Get PDF
    The presence of protein aggregates is commonly believed to be an important risk factor for immunogenicity of therapeutic proteins. Among all types of aggregates, dimers are relatively abundant in most commercialized monoclonal antibody (mAb) products. The aim of this study was to investigate the immunogenicity of artificially created mAb dimers relative to that of unstressed and stressed mAb monomers. A monoclonal murine IgG1 (mIgG1) antibody was exposed to low pH, elevated temperature, or UV irradiation to induce dimerization. Dimers and monomers were purified via size-exclusion chromatography. Physicochemical analysis revealed that upon all stress conditions, new deamidation or oxidation or both of amino acids occurred. Nevertheless, the secondary and tertiary structures of all obtained dimers were similar to those of unstressed mIgG1. Isolated dimers were administered subcutaneously in Balb/c mice, and development of antidrug antibodies and accumulation of follicular T helper cells in draining lymph nodes and spleens were determined. None of the tested dimers or stressed monomers were found to be more immunogenic than the unstressed control in our mouse model. In conclusion, both dimers and monomers generated by using 3 different stress factors have a low immunogenicity similar to that of the unstressed monomers.Biopharmaceutic

    Submicron size particles of a murine monoclonal antibody are more immunogenic than soluble oligomers or micron size particles upon subcutaneous administration in mice

    Get PDF
    Protein aggregates are one of several risk factors for undesired immunogenicity of biopharmaceuticals. However, it remains unclear which features determine whether aggregates will trigger an unwanted immune response. The aim of this study was to determine the effect of aggregates' size on their relative immunogenicity. A monoclonal murine IgG1 was stressed by exposure to low pH and elevated temperature followed by stirring to obtain aggregates widely differing in size. Aggregate fractions enriched in soluble oligomers, submicron size particles and micron size particles were isolated via centrifugation or size-exclusion chromatography and characterized physicochemically. The secondary and tertiary structures of aggregates were altered in a similar way for all the fractions, while no substantial chemical degradation was observed. Development of anti-drug antibodies was measured after subcutaneous administration of each enriched fraction to BALB/c mice. Among all tested fractions, the most immunogenic was the one highly enriched in submicron size particles (∼100-1000 nm). Fractions composed of micron size (> 1 μm to 100 μm) particles or soluble oligomers (< 100 nm) were not immunogenic under the dosing regimen studied in this work. These results show that aggregate size is an important factor for protein immunogenicity.Drug Delivery Technolog

    Discovery of High-Affinity Protein Binding Ligands – Backwards

    Get PDF
    BACKGROUND: There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a class of peptide-based protein ligands, called synbodies, which allow this process to be run backwards--i.e. make a synbody and then screen it against a library of proteins to discover the target. By screening a synbody against an array of 8,000 human proteins, we can identify which protein in the library binds the synbody with high affinity. We used this method to develop a high-affinity synbody that specifically binds AKT1 with a K(d)<5 nM. It was found that the peptides that compose the synbody bind AKT1 with low micromolar affinity, implying that the affinity and specificity is a product of the bivalent interaction of the synbody with AKT1. We developed a synbody for another protein, ABL1 using the same method. CONCLUSIONS/SIGNIFICANCE: This method delivered a high-affinity ligand for a target protein in a single discovery step. This is in contrast to other techniques that require subsequent rounds of mutational improvement to yield nanomolar ligands. As this technique is easily scalable, we believe that it could be possible to develop ligands to all the proteins in any proteome using this approach

    Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD) is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample.</p> <p>Methods</p> <p>Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing.</p> <p>Results</p> <p>In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples.</p> <p>Conclusion</p> <p>MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.</p

    Protein Microarrays and Biomarkers of Infectious Disease

    Get PDF
    Protein microarrays are powerful tools that are widely used in systems biology research. For infectious diseases, proteome microarrays assembled from proteins of pathogens will play an increasingly important role in discovery of diagnostic markers, vaccines, and therapeutics. Distinct formats of protein microarrays have been developed for different applications, including abundance-based and function-based methods. Depending on the application, design issues should be considered, such as the need for multiplexing and label or label free detection methods. New developments, challenges, and future demands in infectious disease research will impact the application of protein microarrays for discovery and validation of biomarkers

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    A new hypothesis for the cancer mechanism

    Full text link

    Comparative analysis of chosen technical features of solid bricks on the examples of single-family houses

    No full text
    corecore