50 research outputs found

    Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13

    Get PDF
    Ammonia-selective catalytic reduction (NH3-SCR) using Cu zeolites is a well-established strategy for the abatement of NOx gases. Recent studies have demonstrated that Cu is particularly active when exchanged into the SSZ-13 zeolite, and its location in either the 6r or 8r renders it an excellent model system for fundamental studies. In this work, we examine the interaction of NH3-SCR relevant gases (NO and NH3) with the Cu2+ centers within the SSZ-13 structure, coupling powder diffraction (PD), X-ray absorption spectroscopy (XAFS), and density functional theory (DFT). This combined approach revealed that, upon calcination, cooling and gas exposure Cu ions tend to locate in the 8r window. After NO introduction, Cu-ions are seen to coordinate to two framework oxygens and one NO molecule, resulting in a bent Cu-nitrosyl complex with a Cu-N-O bond angle of similar to 150 degrees. Whilst Cu seems to be partially reduced/changed in coordination state, NO is partially oxidized. On exposure to NH3 while the PD data suggest the Cu2+ ion occupies a similar position, simulation and XAFS pointed toward the formation of a Jahn-Teller distorted hexaamine complex [Cu(NH3)(6)](2+) in the center of the cha cage. These results have important implications in terms of uptake and storage of these reactive gases and potentially for the mechanisms involved in the NH3-SCR process

    Blending human and artificial intelligence to support autistic children’s social communication skills

    Get PDF
    This paper examines the educational efficacy of a learning environment in which children diagnosed with Autism Spectrum Conditions (ASC) engage in social interactions with an artificially intelligent (AI) virtual agent and where a human practitioner acts in support of the interactions. A multi-site intervention study in schools across the UK was conducted with 29 children with ASC and learning difficulties, aged 4-14 years old. For reasons related to data completeness and amount of exposure to the AI environment, data for 15 children was included in the analysis. The analysis revealed a significant increase in the proportion of social responses made by ASC children to human practitioners. The number of initiations made to human practitioners and to the virtual agent by the ASC children also increased numerically over the course of the sessions. However, due to large individual differences within the ASC group, this did not reach significance. Although no evidence of transfer to the real-world post-test was shown, anecdotal evidence of classroom transfer was reported. The work presented in this paper offers an important contribution to the growing body of research in the context of AI technology design and use for autism intervention in real school contexts. Specifically, the work highlights key methodological challenges and opportunities in this area by leveraging interdisciplinary insights in a way that (i) bridges between educational interventions and intelligent technology design practices, (ii) considers the design of technology as well as the design of its use (context and procedures) on par with one another, and (iii) includes design contributions from different stakeholders, including children with and without ASC diagnosis, educational practitioners and researchers

    Continuous-flow transfer hydrogenation of benzonitrile using formate as a safe and sustainable source of hydrogen †

    Get PDF
    The continuous catalytic transfer hydrogenation of benzonitrile to benzylamine is demonstrated using a palladium on carbon catalyst with triethylammonium formate as reducing agent. Solvent choice was critical in overcoming rapid catalyst deactivation. A 15-fold increase in catalyst productivity was observed in flow compared to batch, which was achieved using an ethanol–water solvent in combination with intermittent catalyst regeneration by washing with water

    Early-onset progressive retinal atrophy associated with an IQCB1 variant in African black-footed cats (Felis nigripes)

    Get PDF
    African black-footed cats (Felis nigripes) are endangered wild felids. One male and full-sibling female African black-footed cat developed vision deficits and mydriasis as early as 3 months of age. The diagnosis of early-onset progressive retinal atrophy (PRA) was supported by reduced direct and consensual pupillary light reflexes, phenotypic presence of retinal degeneration, and a non-recordable electroretinogram with negligible amplitudes in both eyes. Whole genome sequencing, conducted on two unaffected parents and one affected offspring was compared to a variant database from 51 domestic cats and a Pallas cat, revealed 50 candidate variants that segregated concordantly with the PRA phenotype. Testing in additional affected cats confirmed that cats homozygous for a 2 base pair (bp) deletion within IQ calmodulin-binding motif-containing protein-1 (IQCB1), the gene that encodes for nephrocystin-5 (NPHP5), had vision loss. The variant segregated concordantly in other related individuals within the pedigree supporting the identification of a recessively inherited early-onset feline PRA. Analysis of the black-footed cat studbook suggests additional captive cats are at risk. Genetic testing for IQCB1 and avoidance of matings between carriers should be added to the species survival plan for captive management

    Neutralising immunity to omicron sublineages BQ.1.1, XBB, and XBB.1.5 in healthy adults is boosted by bivalent BA.1-containing mRNA vaccination and previous Omicron infection

    Get PDF
    The global COVID-19 landscape is increasingly complex; emerging new variants rapidly cause waves of infection in people with variably induced immunity. Most individuals now have so-called hybrid immunity from both infection and vaccination. However, sequential infecting variants, induction of immunity, and subsequent waning are interlinked, and immune protection against new variants is unclear

    Precision medicine in cats:novel niemann-pick type C1 diagnosed by whole-genome sequencing

    Get PDF
    State-of-the-art health care includes genome sequencing of the patient to identify genetic variants that contribute to either the cause of their malady or variants that can be targeted to improve treatment. The goal was to introduce state-of-the-art health care to cats using genomics and a precision medicine approach. To test the feasibility of a precision medicine approach in domestic cats, a single cat that presented to the University of Missouri, Veterinary Health Center with an undiagnosed neurologic disease was whole-genome sequenced. The DNA variants from the cat were compared to the DNA variant database produced by the 99 Lives Cat Genome Sequencing Consortium. Approximately 25× genomic coverage was produced for the cat. A predicted p.H441P missense mutation was identified in NPC1, the gene causing Niemann-Pick type C1 on cat chromosome D3.47456793 caused by an adenine-to-cytosine transversion, c.1322A>C. The cat was homozygous for the variant. The variant was not identified in any other 73 domestic and 9 wild felids in the sequence database or 190 additionally genotyped cats of various breeds. The successful effort suggested precision medicine is feasible for cats and other undiagnosed cats may benefit from a genomic analysis approach. The 99 Lives DNA variant database was sufficient but would benefit from additional cat sequences. Other cats with the mutation may be identified and could be introduced as a new biomedical model for NPC1. A genetic test could eliminate the disease variant from the population

    Genotypic Diversity Is Associated with Clinical Outcome and Phenotype in Cryptococcal Meningitis across Southern Africa.

    Get PDF
    Cryptococcal meningitis is a major cause of mortality throughout the developing world, yet little is known about the genetic markers underlying Cryptococcal virulence and patient outcome. We studied a cohort of 230 Cryptococcus neoformans (Cn) isolates from HIV-positive South African clinical trial patients with detailed clinical follow-up using multi-locus sequence typing and in vitro phenotypic virulence assays, correlating these data with clinical and fungal markers of disease in the patient. South African Cn displayed high levels of genetic diversity and locus variability compared to globally distributed types, and we identified 50 sequence types grouped within the main molecular types VNI, VNII and VNB, with 72% of isolates typed into one of seven 'high frequency' sequence types. Spatial analysis of patients' cryptococcal genotype was not shown to be clustered geographically, which might argue against recent local acquisition and in favour of reactivation of latent infection. Through comparison of MLST genotyping data with clinical parameters, we found a relationship between genetic lineage and clinical outcome, with patients infected with the VNB lineage having significantly worse survival (n=8, HR 3.35, CI 1.51-7.20, p=0.003), and this was maintained even after adjustment for known prognostic indicators and treatment regimen. Comparison of fungal genotype with in vitro phenotype (phagocytosis, laccase activity and CSF survival) performed on a subset of 89 isolates revealed evidence of lineage-associated virulence phenotype, with the VNII lineage displaying increased laccase activity (p=0.001) and ex vivo CSF survival (p=0.0001). These findings show that Cryptococcus neoformans is a phenotypically heterogeneous pathogen, and that lineage plays an important role in cryptococcal virulence during human infection. Furthermore, a detailed understanding of the genetic diversity in Southern Africa will support further investigation into how genetic diversity is structured across African environments, allowing assessment of the risks different ecotypes pose to infection

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore