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ABSTRACT: Ammonia-selective catalytic reduction (NH;-SCR) using Cu zeolites is a i~
well-established strategy for the abatement of NO, gases. Recent studies have a8 CU‘SSZ'13
demonstrated that Cu is particularly active when exchanged into the SSZ-13 zeolite, ~

and its location in either the 6r or 8r renders it an excellent model system for fundamental PD
studies. In this work, we examine the interaction of NH;-SCR relevant gases (NO and

NH;) with the Cu®*" centers within the SSZ-13 structure, coupling powder diffraction NO

(PD), X-ray absorption spectroscopy (XAFS), and density functional theory (DFT). This
combined approach revealed that, upon calcination, cooling and gas exposure Cu ions
tend to locate in the 87 window. After NO introduction, Cu ions are seen to coordinate to

two framework oxygens and one NO molecule, resulting in a bent Cu—nitrosyl complex NH,

with a Cu—N—O bond angle of ~150°. Whilst Cu seems to be partially reduced/changed
in coordination state, NO is partially oxidized. On exposure to NH; while the PD data
suggest the Cu’* ion occupies a similar position, simulation and XAFS pointed toward the
formation of a Jahn—Teller distorted hexaamine complex [Cu(NH;)4]*" in the center of
the cha cage. These results have important implications in terms of uptake and storage of these reactive gases and potentially for
the mechanisms involved in the NH;-SCR process.

DFT simulations

XANES/EXAFS

1. INTRODUCTION

Ammonia-selective catalytic reduction (NH;-SCR) using
zeolites is a well-established technology to remove NO,
compounds from oxygen-rich exhausts, characteristic of diesel
engines.' Since the initial studies by Iwamoto et al. and Konig
et al,” many zeolites of varying topology containing different
transition metal ion (TMI) components have been tested in the
NH;-SCR reaction, with Cu-containing zeolites exhibiting a
very high activity and selectivity over a wide temperature
window. In particular, the superior activity and enhanced
hydrothermal stability of Cu-exchanged SSZ-13 zeolite, based
on the CHA topology, have led to its commercialization for
mobile applications.'~

Over the past few years many characterization methods have X i ) ]
been applied to gain insight into the exceptional catalytic Besides the nature and location of the active Cu sites, the

. . . . 1-3
performance of Cu-SSZ-13 zeolite investigating, among other SCR reactlon‘mechanlsm has been controversial until now.
aspects, the nature and location of the Cu active sites.”” " Several studies have been performed to determine the

Initial studies indicated that Cu®" ions occupy positions in the intermediate species formed upon NO or NHj; adsorption on

Cu®" ions are located in the 6, whereas at higher loadings, Cu®*
ions occupy positions in both the 6r and 8r.”'% The preference
for Cu to reside in the 8r has been recently supported by
Rietveld/maximum entropy methods applied to synchrotron
powder XRD data in combination with DET calculations'" as
well as EXAFS analysis combined with X-ray absorption near
edge structure/X-ray emission spectroscopy (XANES/XES)
simulations of a high-loaded Cu-SSZ-13 sample,'” evidencing
that the majority of Cu species are located at a specific site in
the 8r under dehydrated conditions. Interestingly, it has been
anticipated that isolated Cu®* ions may migrate within the SSZ-
13 structure during dehydration or else interaction with
adsorbates, suggesting a more complicated picture for the
location of the active Cu species in SSZ-13."

6r of the primary d6r structures of SSZ-13 zeolite,"* in
agreement with density functional theory (DFT) calculations,
which showed a better stability for Cu?* ions in this
conﬁguration.”’15 Subsequent works, however, reported an
effect of Cu loading on Cu location; i.e., at low Cu loadings,
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FTIR and "N MAS NMR studies provided evidence of the
formation of side-on Cu®---NO" species upon NO adsorption
on Cu-SSZ-13, produced by direct oxidation of NO over Cu**
or by NO, disproportionation.””'® The optimized geometry
showed a Cu—N—O angle of 146.7°. These results were in line
with earlier IR data, which showed the formation of nitrosyl
species on Cu-SSZ-13."*'7 Accordingly, a reaction mechanism
was anticipated, wherein the initially formed Cu*---NO*
intermediates react with water, forming Cu" HONO/H' species
that convert, in turn, into ammonium nitrite-like complexes by
reaction with NH;. N, and water are then formed from the
decomposition of ammonium nitrite-like complexes.'® In
contrast, on the basis of operando XAS and DFT data, it has
been proposed the formation of Cu*H,NNO/H" intermediate
species from NO-assisted dissociation of NH; bounded to Cu?*
sites.'® These species decompose to N, and water, which are
also produced in subsequent steps of the mechanism from the
decomposition of adjacent NO,” and NH," ions adsorbed on
Cu®* sites.'® Very recently, a complete catalytic cycle of the
NH;-SCR reaction has been reported, in which the standard
SCR is a combination of NO oxidation with the fast SCR
reaction (i.e, NO is proposed to react with surface nitrate
species, leading to the release of one NO, molecule and leaving
a nitrite species at the metal site). Overall, the reaction is shown
to proceed via two general steps, oxidation of the catalyst by
NO + O, and reduction by NO + NH;, being the oxidation of
NO by O, to form bidentate nitrates the rate-determining step
for standard SCR."”

Similarly, the nature and role of NH; adsorbed species have
also been extensively investigated. Earlier in situ XAS/XRD
studies revealed a change in the local geometry of Cu at low
temperatures (from square planar to tetrahedral) due to the
direct interaction with one NH; molecule, coinciding with a
low catalytic activity. Notably this process was seen to be
reversible at temperatures typical of maximum activity and
therefore related to a blocking interaction of NHj at low
temperatures.” Subsequent DFT calculations combined with in
situ FTIR measurements at 250 °C showed the presence of a
number of adsorbed species, including NH," ions, formed on
the Bronsted acid sites, [Cu(NH;),]*" complexes, resulting
from NH; coordination with the Cu®** Lewis sites, and NH,
adsorbed on extra-framework Al (EFAI) species.”” The NH,*
ions reacted very slowly in comparison to NH; coordinated to
the Cu®* ions,”””" and the Brensted acid sites were proposed to
act mainly as NH; storage sites.”” Later, also based on FTIR
results, it was shown the existence of NH,"-nNHj associations,
while from the combination of DFT calculations and XANES/
XES data, it was reported the formation of linear Cu” species in
O(framework)—Cu—NH; or H;N—Cu—NH; configurations
upon NH; exposure at 393 K, with an almost linear adsorption
geometry in the case of one ammonia molecule, and a N—Cu—
N angle of 177° in the case of two ammonia molecules.””
Nevertheless, whereas in situ EPR and NMR combined with
DFT indicated that NH; leads to Cu®* reduction to Cu*—
allowing as well the identification of a variety of Cu—NHj,
complexes and NH," ions**—combined operando XAS and
DFT calculations indicated that NO and NH; together are
necessary for the reduction of Cu?"."* This is in line with very
recent results, which showed that exposure to NO alone lead to
a Cu* state, while NH; alone lead primarily to a [Cu(NH;),]**
complex."’

In this study, Cu-SSZ-13 samples were studied at room
temperature using combined X-ray absorption spectroscopy

and powder diffraction (XAFS/PD) after exposure to NO or
NHj; so as to be able to investigate both the location of Cu
species within the zeolite framework and the interaction
between the reactants and the Cu sites (see Figure 1). The
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Figure 1. Illustration of the cha cage, with 6r and 8r indicated in green.
Possible locations for the copper sites are shown in brown. The
techniques used in the present study to structurally characterize Cu
coordination complexes upon interaction with the crucial SCR gases,
NO and NH;, are also given.

advantage in combining these two techniques is that the XAFS
data provides local “real space” information regarding the local
coordination state around the Cu ion, whereas PD provides the
long-range reciprocal space information to observe the vicinity
around the Cu species present in a particular location.® The
strategy employed for analyzing the data involved first
determining from PD data a starting model for the
distribution/behavior of Cu in the presence of NO or NHj.
On the basis of these results, additional DFT based static and
dynamic simulations were performed, so as to come up with
more accurate descriptions of the interaction of NO and NH;,
with the Cu species present in SSZ-13. The resultant models
were then further optimized using EXAFS in order to account
for any local (real-space) differences in the Cu environment.

2. EXPERIMENTAL AND THEORETICAL METHODS

2.1. Catalyst Materials. Details on the synthesis of SSZ-13
(Si/Al = 15) and consequent ion exchange to obtain Cu-SSZ-
13 (2 wt % Cu; Si/Al = 15) are mentioned in a previous study
and not repeated herein.”’

2.2. In Situ Synchrotron Studies. Separate XAFS and PD
measurements were performed at the Swiss-Norwegian beam-
line (SNBL; BMO1B and BMO1A, respectively) in the
European Synchrotron Research Facility (ESRF), Grenoble,
France.”* SNBL offers a preset gas rig, thereby enabling in situ
measurements without the need of assembling additional
setups. To adapt to the laboratory plug-flow conditions, sieved
fractions of samples were packed into quartz capillaries (2 and
0.5 mm diameter, respectively). To study the adsorption
behavior of NO and NHj, the sample was first calcined at 773
K in a $% O,/He flow (20 mL/min). This was allowed to cool
to room temperature (RT), at which point the gas flow was
changed to 10 mL/min of 0.5% NO/He (or 0.5% NH,/He)
and allowed to reach steady state for 10 min before
measurements were performed.

2.2.1. X-ray Absorption Fine Structure (XAFS). Using a
Si(111) double crystal monochromator, X-ray absorption data
at the Cu K-edge (8979 eV) were collected in transmission
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mode at RT. Acquisition was performed over several minutes to
obtain good statistics (signal-to-noise) for the data collected.
The X-ray absorption data were background corrected using
Athena (IFFEFIT software package).””*° A second-order
polynomial was fitted to the raw data in the pre-edge region
followed by a cubic spline with k*-weighting through the post-
edge region. The edge jump was defined by extrapolating the
spline background to the edge energy (8979 eV) and
multiplying the background-subtracted data by a scale factor
to give an edge jump of 1.0. The normalized data were k’-
weighed, and a least-squares fitting analysis was performed over
a k-range of 3—11 A™". The FT of the k’>-weighed data were
phase corrected and fit (using single scattering paths) to the
proposed theoretical model using the DL-EXCURV program.
An amplitude reduction factor (S,?) value of 0.9 was used for all
data sets.”” Errors in the determination of the parameters
derived from the fitting of the EXAFS data were estimated to be
10% of the coordination number and Debye—Waller factor and
~0.02 A for bond distance.”®

2.2.2. Powder Diffraction (PD). X-ray diffraction data were
collected at beamline BMOIA of the ESRF (the Swiss-
Norwegian beamline). The diffractometer is based on a
Huber goniometer with a Pilatus 2 M detector. X-rays with a
wavelength of 0.698 11 A were used, selected by two Rh-coated
mirrors and a silicon (111) double crystal monochromator. The
beamline setup is described in detail elsewhere.”” Data were
collected at a sample-to-detector distance of 260 mm
(calibrated using NIST SRM660b lanthanum hexaboride),
and a 26 range of 2°—48.5° was used in the Rietveld analysis.
Samples of Cu-SSZ-13 were packed between plugs of quartz
wool in 0.5 mm quartz capillaries and mounted in a Norby-type
flow cell.”® The samples were activated at a temperature of 773
K (heated using a hot air blower) under a flow of 50% oxygen
in helium (10 mL/min), then cooled to room temperature, and
exposed for 10 min to a flow of either NH; (5% in helium) or
NO (4% in helium) after purging with pure helium (10 mL/
min). Data were collected throughout the process with a data
collection time of 10 s per frame and converted to 1-D powder
patters using Fit2D*"** and the SNBL scaling software.”’

Rietveld and difference Fourier analysis was carried out with
the program TOPAS.** The initial model for the framework
was taken from our earlier structure of Cu-SSZ-13 under SCR
conditions.” After refinement of the framework model to obtain
reasonable lattice parameters, background (12/9 term Cheb-
shev polynomial for Cu-SSZ-13-NO/NH;, respectively, plus a
broad peak with refined Lorentzian crystallite size, position, and
intensity parameters to fit the amorphous capillary scattering)
scale and peak broadening values (the peak shape from BMO1A
is sufficiently symmetric that the TOPAS fundamental
parameters size and strain macros can be used directly—in
this case the Gaussian size and strain macros were applied)
difference Fourier maps were used to locate the Cu and gas
atoms. The scaling factor was obtained using the high angle
data (which are not significantly affected by adsorption of
molecules in a zeolite framework®”) and fixed for determination
of the difference maps using the whole powder pattern. The Cu
atom was initially located in the 8r window (in agreement with
the structure determined by Andersen et al. using maximum
entropy methods''), and further cycles of difference Fourier
mapping revealed possible positions for the atoms of the
adsorbed gases. In the final Rietveld refinements all framework
atom positions were refined without restraints along with
isotropic thermal parameters for the silicon and oxygen atoms

(one parameter for each type), background, peak broadening,
scale factor, lattice parameters, zero point correction, and
occupancies for the non-framework atoms (a total of 34 refined
parameters for the NO structure and 33 for the NHj structure).

2.3. Computational Details. Theoretical calculations are
ideally suited to explore the geometries of the Cu coordinated
complexes and their detailed molecular interactions.*® Advances
in both theoretical methodologies and applied model systems
ensure that simulations are more realistic and able to capture
relevant effects. Importantly, long-range van der Waals
interactions which are known to be crucial for describing
adsorption of guest molecules in zeolite systems can be
included using the empirical corrections as developed by
Grimme and co-workers (i.e., the DFT-D method).>” Second,
the nanoporous environment can be accounted for by using
extended clusters or periodic unit cells.">****7* Although
the investigated molecules NO and NHj are relatively small, the
zeolite environment must be included to provide a realistic
description of the coordinated complexes and their direct
environment. In the present contribution, periodic DFT-D-
based simulations are performed using large unit cells of Cu-
SSZ-13. Such a periodic approach has the advantage over
cluster models since it includes the full environment and no
fictitious boundaries are introduced.

Density functional theory (DFT) geometry optimizations
were carried out using the Gaussian plane wave (GPW)
method as implemented in the CP2K software program.*'~**
The PBE exchange-correlation functional with additional
pairwise dispersion corrections according to the D3 scheme
of Grimme in combination with a double-{ MOLOPT basis set
with plane wave cutoff of 300 Ry was used.””**~* The PBE
functional was previously shown to provide accurate structures
for Cu-SSZ-13 zeolites." "%

The unit cell parameters were taken from crystallographic
data of pure silica SSZ-13 and kept fixed during the geometry
optimization. The employed Cu-exchanged unit cell contains
109 atoms, including 36 T-sites with corresponding oxygen
atoms and one Cu’* ion. To compensate for the charge on the
Cu®* ion, two silicon atoms were substituted by aluminum.'*
The double Si to Al substitution was done at the same locations
of our previous investigation.zo This leads to a Si/Al ratio of 17,
which is close to the experimental value of 15 used in this study.
This choice is possible since the applied unit cell corresponds
with the hexagonal structure containing 36 T-sites. As a matter
of comparison, previous studies by Goltl et al. apply the
rhombohedral unit cell for the CHA topology, containing 12 T-
sites.' '>%%” These minimal unit cell calculations do not allow
exploring structures with Al substitutions located in different
d6r units, as is the case in our calculations. Moreover, a larger
unit cell reduces the interaction of the copper complexes with
their periodic images.

Atomic charges were calculated using the Hirshfeld-I (HI)
partitioning scheme.”” Several assessment studies have shown
that the HI scheme leads to accurate electrostatic potentials®”>'
and that the HI charges are to some extent transferable, e.g.,
with respect to the choice of basis set”> and conformational
changes.” The charge distribution of the original Cu-
containing SSZ-13 models as well as NO and NH; coordinated
complexes were investigated. The performed HI analysis
involves the PBE-D3 method and basis set specifications as
used for the geometry optimizations. As any other partitioning
scheme, it does not allow to directly determine the discrete
oxidation numbers. We therefore focus on the observable
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trends in atomic charges in order to describe the electron
donation/accepting behavior. The partitioning was done by the
in-house code Horton.>*

In addition to static optimizations, ab initio molecular
dynamics (MD) simulations are performed to include the
effect of temperature and to assess the mobility of the Cu ions
and the guest molecules. MD simulations have previously been
applied in the frame of NH;-SCR chemistry using Cu-SSZ-13
to derive IR spectra of the catalyst materials or NH; adsorption
complexes.”” MD simulations were performed on all atoms
using the canonical ensemble at room temperature (300 K).
After 3 ps through velocity rescaling,® the Nosé—Hoover
thermostat™ was used for 10 ps with a time step of 1 fs.
Geometrical information was derived from the MD simulations;
all post-processing was done using the program MD-tracks.”’

3. RESULTS AND DISCUSSION

Initially we discuss the results obtained from the XRD data
since this allowed us to properly identify the position of the Cu
ions and subsequent complexes within the microporous
volume. Thereafter, we discuss plausible complexes as
determined from simulation before using both types of data
to interpret the XANES and EXAFS results.

3.1. Exposure of NO to Cu-SSZ-13. 3.1.1. Synchrotron-
Based in Situ Powder Diffraction (PD). Figure 2 shows the
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Figure 2. Observed, calculated, and difference patterns with the
corresponding expected reflection positions obtained from the
Rietveld refinement of powder diffraction data collected on Cu-SSZ-
13 after exposure to NO at room temperature (labeled Cu-SSZ-13-
NO) using a fixed zero error of 0.002. The inset illustrates the fit at
high angle. Tables S1—S3 contain details of the information extracted
from the Rietveld refinement.

observed, calculated, and difference patterns obtained from the
Rietveld refinement of synchrotron PD data collected on Cu-
SSZ-13 at room temperature after exposure to NO. The
position of NO in the structure was determined as described in
section 2.2.2. The difference Fourier map after determination of
the Cu position is given in Figure S1 while the experimental
parameters and goodness-of-fit factors are presented in Table
S1 with the coordinates and selected bond lengths and angles
obtained from the analysis shown in Tables S2 and S3,
respectively. The average T—O (Sil—O) bond length (1.613 +
0.004 A) is slightly higher than the mean value of (1.594 +
0.027 A) as reported in a comparison of various pure silica
zeolites.”” Importantly, the Cu®* ion was seen to locate in the
center of the 8r (see Figure 3). The Cul—O distances are 3.440
A (02),3.167 A (03), and 3.215 A (04); this is probably due

136 A

146.7° 238 A ®orhys

@0 Phys

Figure 3. Model derived using difference Fourier maps from the
diffraction data of Cu-SSZ-13-NO shown in Figure 2. Silicon atoms =
orange, oxygen = red, Cu = pale blue, and N = dark blue. Key bond
lengths and angles are labeled along with atoms assigned to the
positions of possible physisorbed gas molecules in the cha cage. Note
the appearance of two Cu—N—O interactions is due to symmetry and
not indicative of two Cu—nitrosyl species. The asymmetric unit and
additional structure views (including the presence of the second N
component) are given in Figure S1.

to an averaging of the electron density from the Cu atom on
the special position at (1/2, 1/2, 0) and is essentially in
agreement with the more detailed maximum entropy study
carried out by Andersen et al,'" in that the Cu is situated in the
8r. Attempts to use the Cu position suggested by Andersen et
al. resulted in a worse final R factor when refined against the
diffraction data shown above.

Further electron density peaks were observed around the Cu
and in the center of the cha cage. The components closest to
the Cu were assigned as nitrogen atoms on the basis of recent
work, since the similar X-ray scattering factors of O and N
make them almost impossible to distinguish using X-rays.”"'
The N atom (Cul—N2 = 2.38 A) has a neighboring Fourier
peak at a distance of 1.36 A, assigned as an oxygen atom (OS).
The obtained Cul —-N2—0S bond angle of 146.6° is remarkably
the same as has recently been reported for a Cu—N—-O (Cu—
nitrosyl) complex in $$Z-13."° Two further oxygen atoms were
added to the model on the Fourier peaks in the center of the
cha cage (Oyyy); these probably represent the location of NO
which is physisorbed in the framework rather than bound to the
Cu. Note that the approach used here allows determining of
not only species coordinated to Cu but also physisorbed
species, which cannot be accounted by the other techniques
employed in this work. Additionally, we note an additional N at
2.16 A away from the Cu (Cul—NI; for clarity this is not
shown here in Figure 3 but can be seen in Figure S1). This is
close to a special position and has no neighboring peaks in the
difference Fourier maps. This peak is almost certainly a
manifestation of the disordered location of the NO molecules
(due to dynamic disorder of the gas, averaging of NO locations
in different parts of the crystal lattice and symmetry). The
structure of the proposed model is shown in Figure 3. This
model is clearly no more than an approximation of the true
structure, averaged by disorder and symmetry; however, the
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Rietveld fit is of good quality (Rwp = 3.386). Details of the
refinement (including structural phase information, refined
atomic positions, occupancies, symmetry, and thermal param-
eters) are summarized in Tables S1—S3.

The apparent bent nature of the NO—Cu** complex in
combination with an NO bond distance of 1.36 A could suggest
that reduction of the Cu occurs during the formation of the
NO-Cu complex.*”*® Note that shifting the Cu away from the
center of the 8r would increase the Cu—N—O angle still
turther.

3.1.2. DFT Geometry Optimizations and MD Simulations.
Based on the diffraction results, adsorption of NO at a Cu®* site
near the 8r is modeled using periodic PBE-D3 simulations.
Figure 4a depicts the detailed optimized geometries of the NO
adsorbed complex, and Table 1 summarizes the resulting
geometrical parameters.

q(Cu)=+1.15
epin(CU)=+0.38

Figure 4. (a) Detailed view of optimized Cu—NO nitrosyl complex
formed in SSZ-13 using static periodic PBE-D3 simulations, with Cu
initially in the 8. Bond lengths are given in A. The distance between
the N of NO and the 8 window is also indicated. (b) Isosurface of the
spin density (gray lobes) of the Cu-SSZ-13 and computed HI (spin)
charges using PBE-D3.

The copper ion remains approximately in the 8r window
upon NO adsorption with a theoretically obtained bond angle
equal to ~151° (Table 1), which is in very good agreement
with the XRD data. The bond distances are of course shorter
than those reported from the Rietveld analysis but provided the
local structure model in order to perform a detailed multiple
shell fit to the EXAFS data. The copper ion coordinates with
two oxygen framework atoms, and in combination with the NO
adsorption, the 3-fold coordination is maintained compared to
the situation of the original Cu-SSZ-13 material.

The effect of temperature on the adsorption complexes is
assessed by performing MD simulations at room temperature.
Averaged geometrical parameters and computed variations ¢
are included in Table 1. The results clearly indicate that the
averaged MD properties are in close agreement with those from
the static geometry optimization obtained at 0 K. The variation
of the copper ion location—relative to the averaged MD
position—is indicative of the mobility of the Cu center (see
Figures S3 and S4). The copper ions move around in a range of
approximately 1 A, in both a vertical and horizontal direction.
The 10 ps MD simulations point out that the difference in
mobility between the bare copper ions and those after
adsorption of a NO molecule is very small at the investigated
temperature of 300 K. It should be mentioned at this stage that
in order to describe the Cu mobility in terms of a deNO,
mechanism, the simulation lengths are too short, and more
advanced methods, in particular accelerated MD techniques,
provide an interesting approach.”’ Indeed, it has been shown

Table 1. Relevant Bond Distances [in A] and Angles [in deg]
of Adsorbed Complexes”

theoretical values

atom pair static dynamic
Cu-SSZ-13-NO
N-O 1.15 1.18 (0.08)
Cu—N 1.75 1.75 (0.05)
O-N-Cu 151 151 (12.6)
Cu-0 1.92 1.94 (0.05)
2.02 1.98 (0.06)
Cu-T 2.75 2.74 (0.06)
3.24
3.32
[Cu(NH;),]* complex -- Cu-SSZ-13-NH,
Cu—N 2.05 2.07 (0.07)
Cu—0 (famework) 2.57 3.10 (0.16)
3.41 3.28 (0.19)
3.44 3.06 (0.16)
3.46 3.43 (0.12)
av_min:” 2.94
Cu-T 347 3.95 (0.15)
3.56 3.91 (0.14)
4.10 424 (0.14)
424 424 (0.17)
3.78 3.78 (0.14)

“The static data result from geometry optimizations. The MD data are
averaged parameters obtained from analyzing the 10 ps MD runs at
room temperature. Standard variations o of the MD data are also listed
in parentheses. Note: T is a general label given to framework atoms
which could be either Si** or AI*. “Due to the flexible nature of the
[Cu(NH,),]** complex, hydrogen bonds between the hydrogens of
the NH; molecules and the framework oxygen atoms are instantly
formed and broken. Therefore, in addition to these averaged values,
the “av_min” value is also reported, providing the average of the
minimal Cu—O distance during the MD simulation.

that the Cu occupancy in the 6r increases with increasing
temperature either during calcination® or under standard SCR
conditions.”

Next, the electronic charge density is partitioned over the
multiple atoms in the system—according to the Hirshfeld-I
(HI) scheme—resulting in indicative atomic HI charges to
assess the possible reduction of the Cu** upon NO adsorption.
Figure 4b displays the spin densities of the original Cu-SSZ-13
material, with indication of computed HI (spin) charges on the
Cu center. There is also a non-negligible amount of spin
density at the O atoms neighboring the Al positions. Upon NO
adsorption, the charge on the Cu is found to be slightly
increased (from 1.15 to 1.25) using the PBE-D3 functional.
However, the charge is found to be slightly reduced (going
from 1.50 to 1.40) when employing a hybrid B3LYP functional
(in correspondence with previous results of Goeltl et al.*”),
involving the transfer of electrons to the framework.

3.1.3. Synchrotron-Based in Situ X-ray Absorption Near-
Edge Structure (XANES). Figure S illustrates the Cu K-edge
XANES spectra of Cu-SSZ-13 collected during calcination at
773 K and at RT after exposure to NO. The XANES spectra
contain a weak pre-edge feature at ~8977 eV (magnified inset
(b)), attributable to a dipole-forbidden/quadrupole allowed 1s
to 3d transition observed in Cu*" systems."” Although there are
not many observations made to define this pre-edge peak, it is
clear that the intensity is slightly greater in the Cu-SSZ-13
sample recorded at 773 K than for the Cu-SSZ-13-NO sample.
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Figure 5. (a) Cu K-edge XANES spectra of Cu-SSZ-13 during
calcination in 5% O,/He at 773 K and after exposure to NO (collected
at room temperature). (b) Magnification of the background subtracted
pre-edge feature (1) at ~8977 eV.

A second following pre-edge feature (first arrow) is seen at
~8982 eV and has previously been assigned to a transition from
a 1s to the doubly degenerate 4p,, orbitals in Cu”
systems.***®® The absorption threshold (second arrow at
~8986 eV) is an often observed feature in copper-containing
zeolite systems and is attributed to a Cu®" 1s to 4p, + ligand—
Cu?" charge-transfer excitation, first identified from studies on
the planar Cu(OH), system."*°* The given pre-edge features
and position of the rising absorption edge suggest that the Cu
environment is broadly similar in both samples and that the
local environment around the Cu species does not appear to
change very much after NO exposure. However, the small
reduction observed in the pre-edge peak as well as the
appearance of a feature at 8982 eV suggests that perhaps a
partial reduction of all Cu** to Cu™** or a total reduction of
some of the copper species to Cu* occurs as a result of the
interaction between Cu and NO. We note, however, that it is
not possible to rule out a change in coordination environment
of the Cu®" to a state with higher symmetry might also be a
cause of the reduction in the pre-edge peak intensity. Indeed,
this would be in agreement with previous works showing that
NO exposure alone does not lead to a significant Cu
reduction.'®"?

3.1.4. Synchrotron-Based in Situ Extended X-ray Absorp-
tion Fine Structure (EXAFS). Analysis of the k’-weighted

EXAFS data was performed considering only single scattering
paths. The results of the analysis (fit to the data) in both k- and
r-space (Fourier transformed (FT) data) are given in Figure 6.
The initial models were based on the information obtained
from the computer simulations shown in Table 1 and further
optimized to account for any local (real-space) differences in
the Cu environment. The obtained near-neighbor distances,
coordination numbers, and Debye—Waller factors are listed in
Table 2.

Table 2. Parameters Obtained from Analysis of Cu K-Edge
k*-Weighted EXAFS Data (Based on the Energy-Minimized
Static Model Detailed in Table 1); Cu-SSZ-13 Collected at
Room Temperature after Exposure to NO“

shells r (A) N 20% (A?)
Cu-0 1.95 2 0.008
Cu—N 1.80 1 0.008
Cu-TI1 2.76 1 0.027
Cu—-T2 3.16 2 0.031

R =2113; Eg=0eV

“r = averaged distance over 1 shell; N = coordination number; ¢ =
Debye—Waller factor; R = statistical goodness of fit factor; E; = Fermi
energy (edge position).

The EXAFS data for which models were taken from the
simulation for Cu in the 8r fit well to the proposal of ~3 short
Cu—O contributions at ~1.95 A in addition to a shorter Cu—N
interaction at ~1.80 A—much shorter than the distances
reported from an analysis of the diffraction data which are
symmetry averaged, but entirely consistent with previous
analyses of Cu in SSZ-13 and other zeolites." We note that
the Debye—Waller factor obtained is very reasonable for a
single Cu—N(O) contribution as opposed to >1. The short
Cu—N distance observed is thought to originate from the NO
acting as a m-acceptor ligand, typical in both linear and bent
Me—NO complexes.”” To complete the model, additional Cu—
T distances from the SSZ-13 framework at 2.76 and 3.16 A are
also found.

3.2. Interaction with NH;. The same procedure as with
NO was used to study the interaction of NH; with Cu in Cu-
SSZ-13.

3.2.1. Synchrotron-Based in Situ PD. Figure 7 shows the
observed, calculated, and difference patterns obtained from the
Rietveld refinement of synchrotron PD data collected on Cu-
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Figure 6. (a) Isolated Cu K-edge k*-weighted EXAFS experimental (black solid line) and fitted (red dashed line) k-plot and associated Fourier
transform and (b) of the EXAFS data collected on Cu-SSZ-13 at room temperature after exposure to NO at room temperature.
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Figure 7. Observed, calculated, and difference patterns with the
corresponding expected reflection positions obtained from the
Rietveld refinement of powder diffraction data collected on Cu-SSZ-
13 after exposure to NH; at room temperature (labeled Cu-SSZ-13-
NH,). The inset illustrates the fit at high angle. Tables S5—S7 contain
details of the information extracted from the Rietveld refinement.

SSZ-13 at room temperature after exposure to NH;. Tables
S§5—S87 list the corresponding goodness-of-fit values, atomic
coordinates, and bond distances and angles of interest,
respectively.

Cu is again located in the 8r window as shown in Figure 8.
Further difference maps after location of the Cu revealed peaks

Figure 8. Model derived using difference Fourier maps from the
diffraction data of Cu-SSZ-13 shown in Figure 7. Cu—N bond lengths
are labeled along with atoms assigned to positions in the cha cage
probably occupied by physisorbed nitrogen. Silicon atoms = orange,
oxygen = red, Cu = pale blue, and N = dark blue. The asymmetric unit
and further views are shown in Figure SS.

at distances of 2.16 A (N3) and 2.83 A (N4) from the Cu;
these were assigned as coordinated nitrogen. Two further peaks
in the center of the cha cage are assigned to physisorbed
ammonia (N1, N2). The crystal structure model is shown in
Figure 8.

The crystal structure model is as for Cu-SSZ-13-NO, not a
truly accurate picture of the disordered structure of adsorbed
ammonia in Cu-SSZ-13, but gives a good indication as to the
location of the chemisorbed gas and the geometry of the Cu-

SSZ-13-NH; complex. The final Rwp for the refinement was
4.878. Full details of the refinement atomic positions and bond
lengths and angles are given in Tables S5—S7.

3.2.2. DFT Geometry Optimizations and MD Simulations.
Adsorption of ammonia on copper in its initial configuration
located in the 8r window was modeled with increasing the
number of adsorbed ammonia molecules. The resulting
structures can be found in Figure S8. Addition of two ammonia
molecules did not result in a linear N—Cu—N complex as seen
by Giordanino et al,;** the obtained angle from the geometry
optimization equals 99°. During these simulations it was
observed that the copper ion remained rather localized, ie.,
present near the 8r window. Because of steric constraints of
these windows (which are only 3.8 A wide), addition of a fourth
ammonia molecule was highly unfavorable. In particular, during
optimization the fourth ammonia molecule drifts toward the
cha cage, suggesting a 3-fold coordinated structure when the
copper is in the 8. A [Cu(NH;),]** structure with the central
Cu located in the 8r window could nevertheless be obtained
(Figure 9b), although this 4-fold coordinated structure is 97 kJ/

\ |
SN

AN =N
Figure 9. Optimized [Cu(NH,),]>" complexes using static PBE-D3
simulations, with the copper ion originally located in (a) the CHA
cage and (b) the middle of the 8r. (c) Optimized [Cu(NH,)¢]**
complex using static PBE-D3 simulations, with the Cu®" jon originally
located in the cha cage.

mol less stable compared to the 3-fold coordinated structure
with the additional ammonia molecule in the cha pore.
Important geometrical distances are included in Table 1. This
complex was however 147 kJ/mol higher in energy (at 0 K)
than the copper—amine complex present in the center of the
pore as has been previously reported by some of us (Figure
9a).”° Once formed, the [Cu(NH;),]*" with the copper in the
8r remains metastable, as observed during the 10 ps MD run.
Averaged MD simulations indicate a minor influence of
temperature on the relevant bond lengths (see Table 1). The
extent of Cu mobility at room temperature (see Figures S3 and
S4) is similar to the aforementioned situations for NO
adsorption. Overall, our simulations suggest a strong preference
for the tetraamine complex [Cu(NH,),]*" to reside in the cage
rather than the 8r.

In addition to the tetraamine complexes, also a hexaamine
[Cu(NH,)4]* complex was modeled. The optimized geometry
(shown in Figure 9¢c) corresponds with a distorted octahedral
structure which is located in the center of the pore. The Cu—N
bond lengths in the c-axis (i.e., along the length of the cha cage)
are 2.294 and 2.618 A, whereas the distance between the
copper and the four other amine molecules is on average 2.093
A. This [Cu(NH,)4]*" complex exhibits a high stability; i.e., the
adsorption of the two additional ammonia molecules
corresponds to an adsorption energy (at 0 K) of 378 kJ/mol,
indicating that the formation of an hexaamine complex residing
in the center of the large pore is energetically very favorable. It
is important to stress, however, that a multitude of hexaamine
complexes, differing in precise bond lengths and hence
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distortion from the octahedral symmetry, could also be
expected.

3.2.3. Synchrotron-Based in Situ XANES. Figure 10
illustrates the Cu K-edge XANES spectra of Cu-SSZ-13
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Figure 10. (a) Cu K-edge XANES spectra of Cu-SSZ-13 during
calcination in 5% O,/He at 773 K and after exposure to NHj
(collected at room temperature). (b) Magnification of the background
subtracted pre-edge feature (1) at ~8977 eV.

collected during calcination at 773 K and at RT after exposure
to NH;. Both XANES spectra again contain a weak pre-edge
feature at ~8977 eV (magnified inset (b)), typical for Cu®*
systems as discussed in section 3.1.3; however, this feature is
much weaker in the NH; exposed sample when compared to
the calcined sample. The resulting drop in intensity therefore
could be either attributed to a reduction to Cu" or else to a
change in coordination geometry around Cu** to a higher
symmetry (either to O, or Dy, both point groups possessing
inversion symmetry rendering the 1s—3d dipole transition
disallowed). We note however the absence of a Cu' charge
transfer band at 8992 eV (lower solid black arrow) which was
observed in the NO exposed sample. The double resonance at
the top of the rising absorption edge (upper solid black arrow)
was observed by some of us previously under standard SCR
conditions during low NO, conversion but also by others. %>
This distinct feature clearly observable in the spectrum has
previously been assigned to Cu®" in a square-planar arrange-
ment, proposed by Chaboy et al. to occur as a result of two final

configurations of 3d° and d'°L of the absorber atom (L = ligand
hole).”” Contrary to the case of NO, and upon comparison to
the reference spectrum, the XANES in this case suggests an
extensive Cu—NHj interaction, resulting in a change in the
local environment for the absorbing Cu. Importantly, no
significant change in Cu oxidation state is observed.

3.2.4. Synchrotron-Based in Situ EXAFS. The corresponding
EXAFS data were again analyzed considering only single
scattering paths. Figure 11 illustrates the experimental data and
simulated fits of the k’-weighted EXAFS data and the
corresponding with the results of the analysis listed in Table
3. The first and major contribution in the phase-corrected

Table 3. Parameters Obtained from Analysis of Cu K-Edge
k*-Weighted EXAFS Data of Cu-SSZ-13 Collected at Room
Temperature after Exposure to NH;“

temperature shells r (A) N 207 (A?)
after exposure to NH; Cu-N 2.04 4.0 0.016
Cu—N 2.71 12 0.021

R =22.39; E; = —0.6793

“r = averaged distance over 1 shell; N = coordination number; ¢ =
Debye—Waller factor; R = statistical goodness of fit factor; E; = Fermi
energy (edge position).

EXAFS-FT observed at ~2.00 A could be fit to the presence of
ca. ~4 N atoms at a distance of 2.04 A. The slightly larger
Debye—Waller factors obtained for the first shell Cu—N
contributions reflects a higher static disorder of the amine
ligands in comparison to the oxygen ligands from the zeolite
framework for either the calcined or NO exposed sample. The
second clear contribution at ca. >2.50 A in the EXAFS-FT
(Figure 11b) corresponded to what we propose to be a second
contribution at 2.71 A with a coordination number of >1. The
large Debye—Waller factor for this contribution in conjunction
with a high degree of correlation with the coordination number
renders it difficult to unambiguously assign an integer
coordination number, and as a result, there is some debate as
to whether it is possible for EXAFS to determine between Cu**
ions in distorted 5- or 6-fold coordination.”” Perhaps the third
significant observation in the FT is a lack of a contribution
around 3 A ascribable to Cu**—0/ Si(framework)y SUggesting a
different Cu* cation location to that seen for the Cu—NO
complex. Indeed, this complete lack of a signal in this part of
the FT would be consistent with a Cu complex located in the
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Figure 11. Isolated Cu K-edge k’-weighted EXAFS experimental (black solid line) and fitted (red dashed line) k-plot (a) and associated Fourier
transform (b) of the EXAFS data collected on Cu-SSZ-13 at room temperature after exposure to NH; at room temperature.
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zeolite cages as suggested by the simulations rather than the 8
as indicated by the PD data.

4. SUMMARY AND CONCLUSIONS

The interaction of NO and NH; with Cu ions in Cu-SSZ-13
was studied using combined XAFS/PD after exposure at room
temperature, with the resultant model geometries optimized
with DFT. In the NO-exposed sample Cu cations were seen to
occupy the 8r site; no discernible presence of Cu in the 6r
could be detected. In contrast, in the NHj-exposed sample
whilst PD suggests a similar tendency for Cu to occupy the 8r,
computational simulations suggest a preference for Cu amine
complexes to locate in the cages of the CHA structure while
XANES and EXAFS indicate the coordination must be 6-fold
and is Jahn—Teller distorted. We elaborate further below.

For the NO-exposed sample, the Cu®* cation forms a
complex comprising two Cu—O bonds (to the SSZ-13
framework) and a third Cu—N—O interaction in which the
Cu—nitrosyl bond angle is ~150°, rendering it an “inter-
mediate” nitrosyl complex.”” Importantly, these results are in
complete agreement with those previously reported by Kwak et
al, wherein a Cu—nitrosyl complex was proposed to be a key
intermediate in the NH,-SCR reaction of NO on Cu-$8Z-13."°

The short Cu—N distance determined from DFT (and fitted
in the EXAFS) as well as small change in the Cu XANES
suggests that the Cu—NO interaction is a “Cu’-like” although
the remaining Cu—O “anchor points” to the 8 maintain Cu in
a predominantly 2+ oxidation state. Further support for this
proposition comes from previous observations showing that Cu
in the 8 is more reducible than Cu in the 6r (and more
reducible than Cu oxides); it seems unlikely that the observed
reduction is due to some unseen (diffraction silent) Cu species.
As a result of the partial reduction of Cu via the formation of
the Cu—nitrosyl complex, the NO molecule becomes partially
oxidized and the N=0O bond distance is slightly longer, ~1.18
A (although from PD this distances appears much longer due
to symmetry averaging), than for gas-phase NO.>” These results
are in excellent agreement with data previously reported by
Pulido and Nachtigall for mononitrosyl Cu—N—O complexes
in ferrierite although in this study the Cu cation possesses a
charge of +1.°

Conversely, NH; appears to have an extensive interaction
with Cu** forming a Cu** containing complex which is likely 6-
coordinate, i.e., [Cu(NH;)s]*". This we rationalize based on a
preference for the Cu—amine complex to locate in the cages of
the structure and evidence for axial NH; contributions at 2.71 A
in the EXAFS data (in addition to four shorter equatorial
contributions at ~2.04 A). We rule out the possibility of 5-fold
coordination on the basis of the presence of long axial
contributions and a weak pre-edge peak which, in the absence
of evidence for Cu reduction, suggests a local environment
possessing inversion symmetry (i.e, O, as opposed to C,, or
D). The lack of a definitive coordination number for the axial
contribution (i.e, whether 1 or 2 ligands are present) reflects
the difficulty in EXAFS analysis to extract reliable coordination
numbers from contributions which are long and probably
dynamic as well as of likely differing lengths.”” The inability of
PD to distinguish between Cu located in the 87 from that of Cu
in the cage can be understood in terms of the smearing of the
electron density across the two sites, and in the difficulty in
being able to resolve this, especially at the loadings present in
our samples. However, these results suggest that the Cu in Cu-
SSZ-13 can contribute significantly to the NHj storage capacity

24401

(which can be useful when operating under NO-rich
conditions); it is also likely to be highly mobile.

The combination of two techniques, one based on directly
obtaining information from real space (XAFS) and another
based on deriving information by exploiting the reciprocal
space (PD), is crucial to obtaining detailed structural models.
The obvious drawback of using X-ray techniques lies in the fact
that they cannot distinguish between elements with closely
related absorption and scattering coefficients such as N and O,
which can limit the type of conclusions that can be made.
However, even with such information it is also necessary to
verify and refine these models with the use of computational
methodologies to obtain the reliable structures necessary to
determine all important structure—function relationships in
catalytic materials. We note that although the data reported
here are obtained under conditions that are far from those in
which this catalytic system is typically employed, they do
provide a useful starting point toward understanding the
formation and role that such complexes play in phenomena
such as adsorption, storage, and catalytic reaction, which are
key processes that enable these catalytic systems to carry out
their intended function.
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