25 research outputs found
Recommended from our members
Absciscic acid induction of environmental stress tolerance in plant cells
Leaf Cuticular Wax, a Trait for Multiple Stress Resistance in Crop Plants
Cuticular waxes form the primary interface between a plant and its external environment. The most important function of this hydrophobic interface is regulation of non-stomatal water loss, gas exchange and conferring resistance to a wide range of biotic as well as abiotic stresses. The biosynthesis, transport and deposition of the cuticular waxes are tightly coordinated by complex molecular networks, which are also often regulated in response to various developmental, biotic as well as abiotic cues. Evidences from model as well as non-model systems suggest that targeted manipulation of the molecular regulators of wax biosynthetic pathways could enhance plant resistance to multiple stresses as well as enhance the post-harvest quality of produce. Under the current scenario of varying climatic conditions, where plants often encounter multiple stress conditions, cuticular waxes is an appropriate trait to be considered for crop improvement programs, as any attempt to improve cuticular traits would be advantageous to the crop to enhance its adaptability to diverse adverse conditions. This chapter briefs on the significance of cuticular waxes in plants, its biosynthesis, transport and deposition, its implication on plant resistance to adverse conditions, and the current options in targeted manipulation of wax-traits for breeding new crop types
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Temperature adaptation in a changing climate: Nature at risk
Temperature adaptation is a much neglected field in the minds of climate change researchers and policy makers. However, increasing fluctuations in temperature mean that the risk of cold and heat stress will pose an increasing threat to both wild and cultivated plants and animals, with frost injury expected to cause devastating damage to crops on an increasingly large scale. Thus, improving shared knowledge of the biological mechanisms of temperature adaptation in plants and animals will help prevent major losses of crops and genetic resources in the future. This book is the first to focus on the mechanistic similarities between species in their responses to temperature in a multi-organism approach that addresses the challenges and impacts of climate change on temperature adaptation in micro-organisms (including pathogens), invertebrates, economically and scientifically important plants and vertebrates in both terrestrial and marine environments. The book concludes with a focus on the interactions between organisms, exploring common mechanisms in temperature adaptation
Arabidopsis Ubiquitin-Conjugating Enzymes UBC4, UBC5, and UBC6 Have Major Functions in Sugar Metabolism and Leaf Senescence
The ubiquitin-conjugating enzyme (E2) is required for protein ubiquitination. Arabidopsis has 37 E2s grouped into 14 subfamilies and the functions for many of them are unknown. We utilized genetic and biochemical methods to study the roles of Arabidopsis UBC4, UBC5, and UBC6 of the E2 subfamily IV. The Arabidopsis ubc4/5/6 triple mutant plants had higher levels of glucose, sucrose, and starch than the control plants, as well as a higher protein level of a key gluconeogenic enzyme, cytosolic fructose 1,6-bisphosphatase 1 (cyFBP). In an in vitro assay, the proteasome inhibitor MG132 inhibited the degradation of recombinant cyFBP whereas ATP promoted cyFBP degradation. In the quadruple mutant ubc4/5/6 cyfbp, the sugar levels returned to normal, suggesting that the increased sugar levels in the ubc4/5/6 mutant were due to an increased cyFBPase level. In addition, the ubc4/5/6 mutant plants showed early leaf senescence at late stages of plant development as well as accelerated leaf senescence using detached leaves. Further, the leaf senescence phenotype remained in the quadruple ubc4/5/6 cyfbp mutant. Our results suggest that UBC4/5/6 have two lines of important functions, in sugar metabolism through regulating the cyFBP protein level and in leaf senescence likely through a cyFBP-independent mechanism
Data from: Tissue-specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns
The wheat (Triticum aestivum L.) crown is the critical organ of low temperature stress survival over winter. In cold-acclimated crowns, ice formation in the apoplast causes severe tissue disruption as it grows at the expense of intracellular water. While previous crown studies have shown the vascular transition zone (VTZ) to have a higher freezing sensitivity than the shoot apical meristem (SAM), the mechanism behind the differential freezing response is not fully understood. Cooling cold-acclimated crowns to –10 °C resulted in an absence of VTZ tetrazolium chloride staining, whereas the temperatures at which 50% of the SAM stained positive and 50% of plants recovered (LT50) were similar after cold acclimation for 21 (–16 °C) and 42 d (–20 °C) at 4 °C. Proteomic analysis of the apoplastic fluids identified dehydrins, vernalization-responsive proteins, and cold shock proteins preferentially accumulated in the SAM. In contrast, modifications to the VTZ centered on increases in pathogenesis-related proteins, anti-freeze proteins, and sugar hydrolyzing enzymes. Fourier transform infrared spectroscopy focal plane array analysis identified the biochemical modification of the cell wall to enhance methyl-esterified cross-linking of glucuronoarabinoxylans in the VTZ. These findings indicate that the SAM and VTZ express two distinct tissue-specific apoplastic responses during cold acclimation