293 research outputs found

    Survival of Exfoliated Epithelial Cells: A Delicate Balance between Anoikis and Apoptosis

    Get PDF
    The recovery of exfoliated cells from biological fluids is a noninvasive technology which is in high demand in the field of translational research. Exfoliated epithelial cells can be isolated from several body fluids (i.e., breast milk, urines, and digestives fluids) as a cellular mixture (senescent, apoptotic, proliferative, or quiescent cells). The most intriguing are quiescent cells which can be used to derive primary cultures indicating that some phenotypes retain clonogenic potentials. Such exfoliated cells are believed to enter rapidly in anoikis after exfoliation. Anoikis can be considered as an autophagic state promoting epithelial cell survival after a timely loss of contact with extracellular matrix and cell neighbors. This paper presents current understanding of exfoliation along with the influence of methodology on the type of gastrointestinal epithelial cells isolated and, finally, speculates on the balance between anoikis and apoptosis to explain the survival of gastrointestinal epithelial cells in the environment

    Exosomes and miRNA-Loaded Biomimetic Nanovehicles, a Focus on Their Potentials Preventing Type-2 Diabetes Linked to Metabolic Syndrome

    Get PDF
    Exosomes are small membrane vesicles of 30–150 nm, members of the extracellular vesicle family and secreted by various cell types. Different studies describe specific microRNA (miRNA) with altered expression in serum and/or plasma of patients suffering from diabetes or metabolic syndrome. Diabetic cardiomyocyte-derived exosomes loaded with miRNAs like miR-320-3p (or 320a) have been shown regulating angiogenesis on endothelial cell cultures. Insufficient myocardial angiogenesis is the major manifestation of diabetes-caused ischemic cardiovascular disease. Studies on transfer of functional microRNAs between mouse dendritic cells via exosomes have shown that some miRNAs (miR-320-3p, 29b-3p, 7a-5p) are distributed in immature and mature exosomes. Among these miRNAs, miR-320-3p is better known in epigenetics for silencing polr3d gene by binding to its promoter in Human Embryonic Kidney-293 cells. Moreover, quantitative and stoichiometric analysis of the microRNA content of exosomes highlights the lack of reliable natural source of such particles loaded with miRNA opening the need for tailoring exosomes or nanoparticles delivering efficiently miRNA intimately linked to immunity, metabolism and epigenetics in target cells. However, loading of extracellular mature miRNA into recipient cells comes with a cost by at least impeding dynamic localization of miRNAs in nucleoli or inefficient miRNA delivery due to rapid recycling by exonucleases. All these works are calling for the design of new biomimetic vehicles and in vivo assessment of miRNA functionality when delivered by natural or biomimetic nanoparticles in order to control metabolic diseases from infancy to adulthood

    Cobalt-based molecular electrocatalysis of nitrile reduction: evolving sustainability beyond hydrogen

    Get PDF
    Two new cobalt bis-iminopyridines, [Co(DDP)(H2O)2](NO3)2 (1, DDP = cis-[1,3-bis(2-pyridinylenamine)] cyclohexane) and [Co(cis-DDOP)(NO3)](NO3) (2, cis-DDOP = cis-3,5-bis[(2- Pyridinyleneamin]-trans-hydroxycyclohexane) electrocatalyse the 4-proton, 4-electron reduction of acetonitrile to ethylamine. For 1, this reduction occurs in preference to reduction of protons to H2. A coordinating hydroxyl proton relay in 2 reduces the yield of ethylamine and biases the catalytic system back towards H2

    Non-Invasive Exploration of Neonatal Gastric Epithelium by Using Exfoliated Epithelial Cells

    Get PDF
    Background & Aims: In preterm infants, exfoliated gastric epithelial cells can be retrieved from aspirates sampled through the naso-gastric feeding tube. Our aims were to determine (1) whether the recovery of exfoliated cells is feasible at any time from birth through the removal of the nasogastric tube, (2) whether they can be grown in culture in vitro, and (3) whether the physiological state of exfoliated cells expressing H+/K+-ATPases reflects that of their counterparts remaining in situ at the surface of the gastric epithelium in neonatal rat pups. Methods: In infants, gastric fluid aspirates were collected weekly after birth or every 3 hours over 24-h periods, and related to clinical parameters (Biocollection PROG/09/18). In rat pups submitted to a single fasting/refeeding cycle, we explored circadian exfoliation with the cellular counter-parts in the gland. All samples were analyzed by confocal imaging and Enzyme-Linked Immunosorbent Assay. Results: Epithelial cells were identified by microscopy using membrane-bound anti-H+/K+ ATPases antibody, assessed for nucleus integrity, and the expression of selected proteins (autophagy, circadian clock). On 34 infants, the H+/K+-ATPasepositive cells were consistently found quiescent, regardless of gestational age and feeding schedule from day-5 of life to the day of removal of the naso-gastric tube. By logistic regression analysis, we did find a positive correlation between the intensity of exfoliation (cellular loss per sample) and the postnatal age (p,0.001). The H+/K+ ATPase-positive cell

    Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine

    Get PDF
    Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine. © 2016 American Chemical Society

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Involvement of GPRASP1 in the development of analgesic tolerance to delta-opioid receptor agonists

    No full text
    La douleur chronique est un problème de santé publique majeur mais hormis les dérivés de la morphine peu d’analgésiques sont disponibles. Le récepteur aux opioïdes delta est une cible intéressante pour faire évoluer l’arsenal thérapeutique. Son activation entraine une analgésie et des effets indésirables modérés, mais l’administration répétée de l’agoniste SNC80 induit le développement d’une tolérance analgésique qui serait due à la dégradation du récepteur. GPRASP1 est un partenaire d’interaction cytoplasmique de DOR qui aurait un rôle dans l’adressage de DOR vers la dégradation par le lysosome après activation. Le but de ce travail était d’évaluer le rôle de GPRASP1 dans le développement de la tolérance analgésique aux agonistes de DOR ainsi que dans sa dégradation. J’ai ainsi pu montrer que le blocage génétique de GPRASP1 prévient complètement le développement de la tolérance analgésique au SNC80 dans différents modèles de douleur mais n’a aucun impact sur la dégradation de DOR, remettant ainsi en cause le rôle précédemment décrit de cette protéine.Chronic pain is a major public health problem, but except morphine derivatives, few analgesics are available. The delta opioid receptor is an interesting target for advancing the therapeutic arsenal. Its activation leads to analgesia and moderate side effects, but repeated administration of SNC80 agonist induces the development of analgesic tolerance, thought to be due to receptor degradation. GPRASP1 is a cytoplasmic interacting partner of DOR that has been proposed to play a role in addressing DOR for degradation by the lysosome after activation. The aim of this work was to assess the role of GPRASP1 in the development of analgesic tolerance to DOR agonists, as well as in its degradation. In this work, I showed that genetic blockade of GPRASP1 completely prevents the development of analgesic tolerance to SNC80 in different pain models, but has no impact on DOR degradation, thus calling into question the previously described role of this protein
    corecore