431 research outputs found
Survival of Exfoliated Epithelial Cells: A Delicate Balance between Anoikis and Apoptosis
The recovery of exfoliated cells from biological fluids is a noninvasive technology which is in high demand in the field of translational research. Exfoliated epithelial cells can be isolated from several body fluids (i.e., breast milk, urines, and digestives fluids) as a cellular mixture (senescent, apoptotic, proliferative, or quiescent cells). The most intriguing are quiescent cells which can be used to derive primary cultures indicating that some phenotypes retain clonogenic potentials. Such exfoliated cells are believed to enter rapidly in anoikis after exfoliation. Anoikis can be considered as an autophagic state promoting epithelial cell survival after a timely loss of contact with extracellular matrix and cell neighbors. This paper presents current understanding of exfoliation along with the influence of methodology on the type of gastrointestinal epithelial cells isolated and, finally, speculates on the balance between anoikis and apoptosis to explain the survival of gastrointestinal epithelial cells in the environment
A Poly(cobaloxime)/Carbon Nanotube Electrode: Freestanding Buckypaper with Polymer-Enhanced H2-Evolution Performance.
A freestanding H2-evolution electrode consisting of a copolymer-embedded cobaloxime integrated into a multiwall carbon nanotube matrix by π-π interactions is reported. This electrode is straightforward to assemble and displays high activity towards hydrogen evolution in near-neutral pH solution under inert and aerobic conditions, with a cobalt-based turnover number (TON(Co)) of up to 420. An analogous electrode with a monomeric cobaloxime showed less activity with a TON(Co) of only 80. These results suggest that, in addition to the high surface area of the porous network of the buckypaper, the polymeric scaffold provides a stabilizing environment to the catalyst, leading to further enhancement in catalytic performance. We have therefore established that the use of a multifunctional copolymeric architecture is a viable strategy to enhance the performance of molecular electrocatalysts.We acknowledge support by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development), the OMV Group, the EPSRC, the BBSRC (Grant BB/K010220/1) and the Woolf Fisher Trust in New Zealand and the Cambridge Trusts. We also thank the National EPSRC XPS User’s Service (NEXUS) at Newcastle University, UK.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/anie.20151137
Exosomes and miRNA-Loaded Biomimetic Nanovehicles, a Focus on Their Potentials Preventing Type-2 Diabetes Linked to Metabolic Syndrome
Exosomes are small membrane vesicles of 30–150 nm, members of the extracellular vesicle family and secreted by various cell types. Different studies describe specific microRNA (miRNA) with altered expression in serum and/or plasma of patients suffering from diabetes or metabolic syndrome. Diabetic cardiomyocyte-derived exosomes loaded with miRNAs like miR-320-3p (or 320a) have been shown regulating angiogenesis on endothelial cell cultures. Insufficient myocardial angiogenesis is the major manifestation of diabetes-caused ischemic cardiovascular disease. Studies on transfer of functional microRNAs between mouse dendritic cells via exosomes have shown that some miRNAs (miR-320-3p, 29b-3p, 7a-5p) are distributed in immature and mature exosomes. Among these miRNAs, miR-320-3p is better known in epigenetics for silencing polr3d gene by binding to its promoter in Human Embryonic Kidney-293 cells. Moreover, quantitative and stoichiometric analysis of the microRNA content of exosomes highlights the lack of reliable natural source of such particles loaded with miRNA opening the need for tailoring exosomes or nanoparticles delivering efficiently miRNA intimately linked to immunity, metabolism and epigenetics in target cells. However, loading of extracellular mature miRNA into recipient cells comes with a cost by at least impeding dynamic localization of miRNAs in nucleoli or inefficient miRNA delivery due to rapid recycling by exonucleases. All these works are calling for the design of new biomimetic vehicles and in vivo assessment of miRNA functionality when delivered by natural or biomimetic nanoparticles in order to control metabolic diseases from infancy to adulthood
Cobalt-based molecular electrocatalysis of nitrile reduction: evolving sustainability beyond hydrogen
Two new cobalt bis-iminopyridines, [Co(DDP)(H2O)2](NO3)2 (1, DDP = cis-[1,3-bis(2-pyridinylenamine)] cyclohexane) and [Co(cis-DDOP)(NO3)](NO3) (2, cis-DDOP = cis-3,5-bis[(2- Pyridinyleneamin]-trans-hydroxycyclohexane) electrocatalyse the 4-proton, 4-electron reduction of acetonitrile to ethylamine. For 1, this reduction occurs in preference to reduction of protons to H2. A coordinating hydroxyl proton relay in 2 reduces the yield of ethylamine and biases the catalytic system back towards H2
Non-Invasive Exploration of Neonatal Gastric Epithelium by Using Exfoliated Epithelial Cells
Background & Aims: In preterm infants, exfoliated gastric epithelial cells can be retrieved from aspirates sampled through the naso-gastric feeding tube. Our aims were to determine (1) whether the recovery of exfoliated cells is feasible at any time from birth through the removal of the nasogastric tube, (2) whether they can be grown in culture in vitro, and (3) whether the physiological state of exfoliated cells expressing H+/K+-ATPases reflects that of their counterparts remaining in situ at the surface of the gastric epithelium in neonatal rat pups. Methods: In infants, gastric fluid aspirates were collected weekly after birth or every 3 hours over 24-h periods, and related to clinical parameters (Biocollection PROG/09/18). In rat pups submitted to a single fasting/refeeding cycle, we explored circadian exfoliation with the cellular counter-parts in the gland. All samples were analyzed by confocal imaging and Enzyme-Linked Immunosorbent Assay. Results: Epithelial cells were identified by microscopy using membrane-bound anti-H+/K+ ATPases antibody, assessed for nucleus integrity, and the expression of selected proteins (autophagy, circadian clock). On 34 infants, the H+/K+-ATPasepositive cells were consistently found quiescent, regardless of gestational age and feeding schedule from day-5 of life to the day of removal of the naso-gastric tube. By logistic regression analysis, we did find a positive correlation between the intensity of exfoliation (cellular loss per sample) and the postnatal age (p,0.001). The H+/K+ ATPase-positive cell
The CO2 tree: the potential for carbon dioxide utilization pathways
Among the most active areas of chemistry research today is that of carbon dioxide utilization: an area of research that was viewed as futile and commercially impractical not so long ago due to the energetic stability of the CO2 molecule. The breakthroughs that largely began in earnest in the 1990s have accelerated and now make up a diverse and plentiful portfolio of technological and scientific advances and commercialized technologies. Here, “The CO2 Tree” is presented as a tool to illustrate the breadth of potential products from CO2 utilization and to communicate the potential of these chemical breakthroughs to address the greatest challenge that society faces today: climate change. It is intended to be useful for scientists, engineers, legislators, advocates, industrial decision-makers, policy makers, and the general public to know what is already possible today and what may be in the near future
Coronary endothelial dysfunction after ischemia and reperfusion: a new therapeutic target?
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
- …
