112 research outputs found

    Nasal Carriage and Antimicrobial Susceptibility of Staphylococcus aureus in healthy preschool children in Ujjain, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence that community acquired <it>S. aureus </it>infections are spreading among healthy children. Nasal colonization with <it>S. aureus </it>plays pivotal role in the increasing prevalence of resistant community acquired <it>S. aureus </it>infections worldwide. A regular surveillance system is important in ensuring quality of patient care. The aim of the study was to assess the prevalence of and the factors associated with nasal carriage of <it>S. aureus </it>and its antibiotic sensitivity pattern among healthy children in Ujjain, India.</p> <p>Methods</p> <p>A prospective study was done in paediatric outpatient clinics of R.D. Gardi medical college Ujjain, India. Healthy children from 1 month to 59 months of age were included. Information on previously known risk factors for nasal colonization was collected using a pre-tested questionnaire. Swabs from anterior nares were collected and transported in Amies transport media with charcoal and cultured on 5% sheep blood agar. Antibiotic sensitivity tests were performed using Kirby Bauer's disc diffusion method according to performance standards of Clinical and Laboratory Standard Institute guidelines.</p> <p>Results</p> <p>Of the 1,562 children from 1-month up-to five years of age included in the study 98 children tested positive for nasal carriage of <it>S. aureus</it>. The prevalence of nasal carriage of <it>S. aureus </it>was 6.3% (95% CI 5.1-7.5) out of which 16.3% (95% CI 8.9-23.8) were methicillin-resistant <it>S. aureus </it>(MRSA). The factors associated with nasal carriage were "child attending preschool" (OR 4.26, 95% CI 2.25-8.03; <it>P </it>= 0.007) or "school" (OR 3.02, 95% CI 1.27-7.18; <it>P </it>< 0.001) and "family size more than 10 members" (OR 2.76 95% CI 1.06-7.15; <it>P </it>= 0.03). The sensitivity pattern of isolated <it>S. aureus </it>showed resistance to commonly used oral antibiotics while resistance to glycopeptides was not noted.</p> <p>Conclusions</p> <p>We found a relatively low rate of nasal carriage of <it>S. aureus </it>in children below five years when compared to children of older age groups in India. Yet, prevalence of MRSA was relatively high.</p

    Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates

    Get PDF
    BACKGROUND: Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. METHODOLOGY/PRINCIPAL FINDINGS: DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. CONCLUSIONS/SIGNIFICANCE: Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups

    Facilitative parenting and children's social, emotional and behavioural adjustment

    Get PDF
    Facilitative parenting (FP) supports the development of children’s social and emotional competence and effective peer relationships. Previous research has shown that FP discriminates between children bullied by peers from children who are not bullied, according to reports of teachers. This study investigates the association between FP and children’s social, emotional and behavioral problems, over and above the association with dysfunctional parenting (DP). 215 parents of children aged 5–11 years completed questionnaires about parenting and child behavior, and children and teachers completed measures of child bullying victimization. As predicted, FP accounted for variance in teacher reports of children’s bullying victimization as well as parent reports of children’s social and emotional problems and prosocial behavior better than that accounted for by DP. However for children’s reports of peer victimization the whole-scale DP was a better predictor than FP. Contrary to predictions, FP accounted for variance in conduct problems and hyperactivity better than DP. When analyses were replicated substituting subscales of dysfunctional and FP, a sub-set of FP subscales including Warmth, Supports Friendships, Not Conflicting, Child Communicates and Coaches were correlated with low levels of problems on a broad range of children’s adjustment problems. Parent–child conflict accounted for unique variance in children’s peer victimization (teacher report), peer problems, depression, emotional problems, conduct problems and hyperactivity. The potential relevance of FP as a protective factor for children against a wide range of adjustment problems is discussed

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    The role of reactive oxygen species in adipogenic differentiation

    Get PDF
    Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis. The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.The South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.http://www.springer.comseries/5584hj2019GeneticsImmunologyOral Pathology and Oral Biolog
    corecore