155 research outputs found

    Immune Activation, Cd4+ T Cell Counts, and Viremia Exhibit Oscillatory Patterns over Time in Patients with Highly Resistant HIV Infection

    Get PDF
    The rates of immunologic and clinical progression are lower in patients with drug-resistant HIV compared to wild-type HIV. This difference is not fully explained by viral load. It has been argued that reductions in T cell activation and/or viral fitness might result in preserved target cells and an altered relationship between the level of viremia and the rate of CD4+ T cell loss. We tested this hypothesis over time in a cohort of patients with highly resistant HIV. Fifty-four antiretroviral-treated patients with multi-drug resistant HIV and detectable plasma HIV RNA were followed longitudinally. CD4+ T cell counts and HIV RNA levels were measured every 4 weeks and T cell activation (CD38/HLA-DR) was measured every 16 weeks. We found that the levels of CD4+ T cell activation over time were a strong independent predictor of CD4+ T cell counts while CD8+ T cell activation was more strongly associated with viremia. Using spectral analysis, we found strong evidence for oscillatory (or cyclic) behavior in CD4+ T cell counts, HIV RNA levels, and T cell activation. Each of the cell populations exhibited an oscillatory behavior with similar frequencies. Collectively, these data suggest that there may be a mechanistic link between T cell activation, CD4+ T cell counts, and viremia and lends support for the hypothesis of altered predator-prey dynamics as a possible explanation of the stability of CD4+ T cell counts in the presence of sustained multi-drug resistant viremia

    Linking species concepts to natural product discovery in the post-genomic era

    Get PDF
    A widely accepted species concept for bacteria has yet to be established. As a result, species designations are inconsistently applied and tied to what can be considered arbitrary metrics. Increasing access to DNA sequence data and clear evidence that bacterial genomes are dynamic entities that include large numbers of horizontally acquired genes have added a new level of insight to the ongoing species concept debate. Despite uncertainties over how to apply species concepts to bacteria, there is clear evidence that sequence-based approaches can be used to resolve cohesive groups that maintain the properties of species. This cohesion is clearly evidenced in the genus Salinispora, where three species have been discerned despite very close relationships based on 16S rRNA sequence analysis. The major phenotypic differences among the three species are associated with secondary metabolite production, which occurs in species-specific patterns. These patterns are maintained on a global basis and provide evidence that secondary metabolites have important ecological functions. These patterns also suggest that an effective strategy for natural product discovery is to target the cultivation of new Salinispora taxa. Alternatively, bioinformatic analyses of biosynthetic genes provide opportunities to predict secondary metabolite novelty and reduce the redundant isolation of well-known metabolites. Although much remains to be learned about the evolutionary relationships among bacteria and how fundamental units of diversity can be resolved, genus and species descriptions remain the most effective method of scientific communication

    The benefit of directly comparing autism and schizophrenia for revealing mechanisms of social cognitive impairment

    Get PDF
    Autism and schizophrenia share a history of diagnostic conflation that was not definitively resolved until the publication of the DSM-III in 1980. Though now recognized as heterogeneous disorders with distinct developmental trajectories and dissociative features, much of the early nosological confusion stemmed from apparent overlap in certain areas of social dysfunction. In more recent years, separate but substantial literatures have accumulated for autism and schizophrenia demonstrating that abnormalities in social cognition directly contribute to the characteristic social deficits of both disorders. The current paper argues that direct comparison of social cognitive impairment can highlight shared and divergent mechanisms underlying pathways to social dysfunction, a process that can provide significant clinical benefit by informing the development of tailored treatment efforts. Thus, while the history of diagnostic conflation between autism and schizophrenia may have originated in similarities in social dysfunction, the goal of direct comparisons is not to conflate them once again but rather to reveal distinctions that illuminate disorder-specific mechanisms and pathways that contribute to social cognitive impairment

    Adolescent suicidal ideation: a comparison of incarcerated and school-based samples

    Get PDF
    and risk-taking behavior. RESULTS: Suicidal ideations during the past year were reported by 21.5% of detained males, compared to 6.7% in the general population. In females, 58.1% of detained individuals reported suicidal thoughts during the past year, compared to 14.4% of the general population. In girls and boys from the general population, both internalizing and externalizing problems were higher in suicidal ideators than in non-suicidal youth, while in the detention group mainly internalizing problems were higher in suicidal ideators. When comparing detention suicidal ideators with those from the general population, male suicidal ideators scored higher on delinquency, while detained female suicidal ideators also scored higher on posttraumatic stress, but lower on prosocial beliefs. LIMITATIONS: Information used in this study was solely based on self-report measures only and limited to Flemish adolescents. CONCLUSION: Since suicidal ideation is a frequent problem in detained youth, adequate recognition and treatment seems clinically relevant. While both internalizing and externalizing psychopathology may be an indicator of suicidal ideation in the general population, internalizing problems may be the main clinical predictor in detained yout

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×10−85.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05) s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between −3×10−15-3\times {10}^{-15} and +7×10−16+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (Ï„Îœ and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    • 

    corecore