220 research outputs found

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Charged-particle distributions in √s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Charged-particle distributions are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb−1170 μb−1, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators

    Measurements of fiducial cross-sections for t\bart production with one or two additional b-jets in pp collisions at √s =8 TeVusing the ATLAS detector

    Get PDF
    Fiducial cross-sections for ttˉt\bar{t} production with one or two additional bb-jets are reported, using an integrated luminosity of 20.3 fb1^{-1} of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for ttˉt\bar{t} events with at least one additional bb-jet is measured to be 950 ±\pm 70 (stat.) 190+240^{+240}_{-190} (syst.) fb in the lepton-plus-jets channel and 50 ±\pm 10 (stat.) 10+15^{+15}_{-10} (syst.) fb in the eμe \mu channel. The cross-section times branching ratio for events with at least two additional bb-jets is measured to be 19.3 ±\pm 3.5 (stat.) ±\pm 5.7 (syst.) fb in the dilepton channel (eμe \mu,\,μμ\mu\mu, and \,eeee) using a method based on tight selection criteria, and 13.5 ±\pm 3.3 (stat.) ±\pm 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 ±\pm 0.33 (stat.) ±\pm 0.28 (syst.)\% for the ratio of ttˉt\bar{t} production with two additional bb-jets to ttˉt\bar{t} production with any two additional jets. All measurements are in good agreement with recent theory predictions.Comment: 41 pages plus author list + cover page (58 total), 9 Figures, 16 tables, submitted to EPJC, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2014-10

    Measurement of the branching ratio Γ(Λb⁰ → ψ(2S)Λ0)/Γ(Λb⁰ → J/ψΛ0) with the ATLAS detector

    Get PDF
    An observation of the Λb0ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 decay and a comparison of its branching fraction with that of the Λb0J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decay has been made with the ATLAS detector in proton--proton collisions at s=8\sqrt{s}=8\,TeV at the LHC using an integrated luminosity of 20.620.6\,fb1^{-1}. The J/ψJ/\psi and ψ(2S)\psi(2S) mesons are reconstructed in their decays to a muon pair, while the Λ0pπ\Lambda^0\rightarrow p\pi^- decay is exploited for the Λ0\Lambda^0 baryon reconstruction. The Λb0\Lambda_b^0 baryons are reconstructed with transverse momentum pT>10p_{\rm T}>10\,GeV and pseudorapidity η<2.1|\eta|<2.1. The measured branching ratio of the Λb0ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 and Λb0J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decays is Γ(Λb0ψ(2S)Λ0)/Γ(Λb0J/ψΛ0)=0.501±0.033(stat)±0.019(syst)\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0) = 0.501\pm 0.033 ({\rm stat})\pm 0.019({\rm syst}), lower than the expectation from the covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table, published on Physics Letters B 751 (2015) 63-80. All figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08

    Dijet production in √s = 7 TeV pp collisions with large rapidity gaps at the ATLAS experiment

    Get PDF
    A 6.8 nb−¹ sample of pp collision data collected under low-luminosity conditions at √s = 7 TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with pT > 20 GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in ΔηF, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, ξ˜, of the fractional momentum loss of the proton assuming single diffractive dissociation (pp → p X). Model comparisons indicate a dominant non-diffractive contribution up to moderately large ηF and small ξ˜, with a diffractive contribution which is significant at the highest ΔηF and the lowest ξ˜. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions

    A search for prompt lepton-jets in pp collisions at root s=8 TeV with the ATLAS detector

    Get PDF
    A search is presented for a new, light boson with a mass of about 1 GeV and decaying promptly to jets of collimated electrons and/or muons (lepton-jets). The analysis is performed with 20.3 fb−1 of data collected by the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a centre-of-mass energy of 8 TeV. Events are required to contain at least two lepton-jets. This study finds no statistically significant deviation from predictions of the Standard Model and places 95% confidence-level upper limits on the contribution of new phenomena beyond the SM, incuding SUSY-portal and Higgs-portal models, on the number of events with lepton-jets.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ. S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom
    corecore