15 research outputs found

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Determinants of Antibody Response to a Third SARS-CoV-2 mRNA Vaccine Dose in Solid Organ Transplant Recipients: Results from the Prospective Cohort Study COVAC-Tx

    No full text
    Background: We studied factors related to humoral response in solid organ transplant (SOT) recipients following a three-dose regimen of an mRNA-based SARS-CoV-2 vaccine. Method: This was a prospective study of SOT recipients who received a third homologous dose of the BNT162b2 (Pfizer–BioNTech) vaccine. The anti-spike S1 IgG response was measured using the SARS-CoV-2 IgG II Quant assay (Abbott Laboratories) with a cut-off of 7.1 BAU/mL. Multiple logistic regression was used to determine the factors associated with humoral response. Results: In total, 395 SOT recipients were included. Anti-spike IgG was detected in 195/395 (49.4%) patients after the second dose and 261/335 (77.9%) patients after the third dose. The overall mean increase in antibody concentration after the third dose was 831.0 BAU/mL (95% confidence interval (CI) 687.4–974.5) and 159 (47.5%) participants had at least a 10-fold increase in antibody concentration after the third dose. The increase in antibody concentration was significantly higher among patients with detectable antibodies after the second dose than those without. Cumulative time from transplantation and liver recipients was positively associated with an antibody response, whereas older age, administration of prednisolone, and proliferation inhibitors were associated with diminished antibody response. Conclusion: Although the third dose of the BNT162b2 vaccine improved humoral responses among SOT non-responders following the second dose, the overall response remained low, and 22.1% did not develop any response. Patients at risk of a diminished vaccine response require repeated booster doses and alternative treatment approaches

    Determinants of Antibody Response to a Third SARS-CoV-2 mRNA Vaccine Dose in Solid Organ Transplant Recipients: Results from the Prospective Cohort Study COVAC-Tx

    No full text
    Background: We studied factors related to humoral response in solid organ transplant (SOT) recipients following a three-dose regimen of an mRNA-based SARS-CoV-2 vaccine. Method: This was a prospective study of SOT recipients who received a third homologous dose of the BNT162b2 (Pfizer–BioNTech) vaccine. The anti-spike S1 IgG response was measured using the SARS-CoV-2 IgG II Quant assay (Abbott Laboratories) with a cut-off of 7.1 BAU/mL. Multiple logistic regression was used to determine the factors associated with humoral response. Results: In total, 395 SOT recipients were included. Anti-spike IgG was detected in 195/395 (49.4%) patients after the second dose and 261/335 (77.9%) patients after the third dose. The overall mean increase in antibody concentration after the third dose was 831.0 BAU/mL (95% confidence interval (CI) 687.4–974.5) and 159 (47.5%) participants had at least a 10-fold increase in antibody concentration after the third dose. The increase in antibody concentration was significantly higher among patients with detectable antibodies after the second dose than those without. Cumulative time from transplantation and liver recipients was positively associated with an antibody response, whereas older age, administration of prednisolone, and proliferation inhibitors were associated with diminished antibody response. Conclusion: Although the third dose of the BNT162b2 vaccine improved humoral responses among SOT non-responders following the second dose, the overall response remained low, and 22.1% did not develop any response. Patients at risk of a diminished vaccine response require repeated booster doses and alternative treatment approaches

    Impact of age and comorbidities on SARS-CoV-2 vaccine-induced T cell immunity

    Get PDF
    Abstract Background Older age and chronic disease are important risk factors for developing severe COVID-19. At population level, vaccine-induced immunity substantially reduces the risk of severe COVID-19 disease and hospitalization. However, the relative impact of humoral and cellular immunity on protection from breakthrough infection and severe disease is not fully understood. Methods In a study cohort of 655 primarily older study participants (median of 63 years (IQR: 51–72)), we determined serum levels of Spike IgG antibodies using a Multiantigen Serological Assay and quantified the frequency of SARS-CoV-2 Spike-specific CD4 + and CD8 + T cells using activation induced marker assay. This enabled characterization of suboptimal vaccine-induced cellular immunity. The risk factors of being a cellular hypo responder were assessed using logistic regression. Further follow-up of study participants allowed for an evaluation of the impact of T cell immunity on breakthrough infections. Results We show reduced serological immunity and frequency of CD4 + Spike-specific T cells in the oldest age group (≥75 years) and higher Charlson Comorbidity Index (CCI) categories. Male sex, age group ≥75 years, and CCI > 0 is associated with an increased likelihood of being a cellular hypo-responder while vaccine type is a significant risk factor. Assessing breakthrough infections, no protective effect of T cell immunity is identified. Conclusions SARS-CoV-2 Spike-specific immune responses in both the cellular and serological compartment of the adaptive immune system increase with each vaccine dose and are progressively lower with older age and higher prevalence of comorbidities. The findings contribute to the understanding of the vaccine response in individuals with increased risk of severe COVID-19 disease and hospitalization

    Late Quaternary dynamics of Arctic biota from ancient environmental genomics.

    Get PDF
    Acknowledgements: Acknowledgements: We thank D. H. Mann for his detailed and constructive comments; and T. Ager, J. Austin, T. B. Brand, A. Cooper, S. Funder, M. T. P. Gilbert, T. Jørgensen, N. J. Korsgaard, S. Liu, M. Meldgaard, P. V. S. Olsen, M. L. Siggaard-Andersen, J. Stenderup, S. A. Woodroffe and staff at the GeoGenetics Sequencing Core and National Park Service-Western Arctic National Parklands for help and support. E.W. and D.J.M. thank the staff at St. John’s College, Cambridge, for providing a stimulating environment for scientific discussion of the project. E.W. thanks Illumina for collaboration. The Lundbeck Foundation GeoGenetics Centre is supported by the Carlsberg Foundation (CF18-0024), the Lundbeck Foundation (R302-2018-2155), the Novo Nordisk Foundation (NNF18SA0035006), the Wellcome Trust (UNS69906) and GRF EXC CRS Chair (44113220)—Cluster of Excellence. The PhyloNorway plant genome database is part of the Norwegian Barcode of Life Network (https://www.norbol.org) funded by the Research Council of Norway (226134/F50), the Norwegian Biodiversity Information Centre (14-14, 70184209) and The Arctic University Museum of Norway. Metabarcoding sequencing was funded by the Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2017B001 and 2020A001). B.D.S. is supported by the Wellcome Trust programme in Mathematical Genomics and Medicine (WT220023); F.R. by a Villum Fonden Young Investigator award (no. 00025300); D.J.M. by the Quest Archaeological Research Fund; P.M. by the Swedish Research Council (VR); R.D. by the Wellcome Trust (WT207492); and A.R. by a Marie Skłodowska-Curie Actions Individual Fellowship (MSCA-IF, 703542) and the Research Council of Norway (KLIMAFORSK, 294929). L.O. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (no. 681605); I.G.A. and Y.L. from the ERC under the European Union’s Horizon 2020 research and innovation programme (no. 819192). J.I.S. and J.M. are supported by the Research Council of Norway. P.B.H. and N.R.E. acknowledge NERC funding (grant NE/P015093/1). D.W.B. was supported by a Marie Skłodowska-Curie Actions Incoming International Fellowship (MCIIF-40974). T.S.K. is funded by a Carlsberg Foundation Young Researcher Fellowship (CF19-0712).During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics
    corecore