67 research outputs found

    Distinctive Role of KV1.1 Subunits in the Biology and Functions of Low Threshold K+ Channels with Implication for Neurological Disease

    Get PDF
    This document is the Accepted Manuscript version of the following article: Saak V. Ovsepian; Marie LeBerre; Volker Steuber; Valerie B. O’Leary; Christian Leibold; & J. Oliver Dolly; ‘Distinctive role of KV1.1 subunit in the biology and functions of low threshold K+ channels with implications for neurological disease’, Pharmacology & Therapeutics, Vol. 159, March 2016, pp. 93-101. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The version of record is available on line at doi: http:dx.doi.org/10.1016/j.pharmthera.2016.01.005 © 2016 Elsevier Inc. All rights reserved.The diversity of pore-forming subunits of KV1 channels (KV1.1–KV1.8) affords their physiological versatility and predicts a range of functional impairments resulting from genetic aberrations. Curiously, identified so far human neurological conditions associated with dysfunctions of KV1 channels have been linked exclusively to mutations in the KCNA1 gene encoding for the KV1.1 subunit. The absence of phenotypes related to irregularities in other subunits, including the prevalent KV1.2 subunit of neurons is highly perplexing given that deletion of the corresponding kcna2 gene in mouse models precipitates symptoms reminiscent to those of KV1.1 knockouts. Herein, we critically evaluate the molecular and biophysical characteristics of the KV1.1 protein in comparison with others and discuss their role in the greater penetrance of KCNA1 mutations in humans leading to the neurological signs of episodic ataxia type 1 (EA1). Future research and interpretation of emerging data should afford new insights towards a better understanding of the role of KV1.1 in integrative mechanisms of neurons and synaptic functions under normal and disease conditionsPeer reviewedFinal Accepted Versio

    A cluster randomised trial, cost-effectiveness analysis and psychosocial evaluation of insulin pump therapy compared with multiple injections during flexible intensive insulin therapy for type 1 diabetes: the REPOSE Trial.

    Get PDF
    BACKGROUND: Insulin is generally administered to people with type 1 diabetes mellitus (T1DM) using multiple daily injections (MDIs), but can also be delivered using infusion pumps. In the UK, pumps are recommended for patients with the greatest need and adult use is less than in comparable countries. Previous trials have been small, of short duration and have failed to control for training in insulin adjustment. OBJECTIVE: To assess the clinical effectiveness and cost-effectiveness of pump therapy compared with MDI for adults with T1DM, with both groups receiving equivalent structured training in flexible insulin therapy. DESIGN: Pragmatic, multicentre, open-label, parallel-group cluster randomised controlled trial, including economic and psychosocial evaluations. After participants were assigned a group training course, courses were randomly allocated in pairs to either pump or MDI. SETTING: Eight secondary care diabetes centres in the UK. PARTICIPANTS: Adults with T1DM for > 12 months, willing to undertake intensive insulin therapy, with no preference for pump or MDI, or a clinical indication for pumps. INTERVENTIONS: Pump or MDI structured training in flexible insulin therapy, followed up for 2 years. MDI participants used insulin analogues. Pump participants used a Medtronic Paradigm(®) Veo(TM) (Medtronic, Watford, UK) with insulin aspart (NovoRapid, Novo Nordisk, Gatwick, UK). MAIN OUTCOME MEASURES: Primary outcome - change in glycated haemoglobin (HbA1c) at 2 years in participants whose baseline HbA1c was ≥ 7.5% (58 mmol/mol). Key secondary outcome - proportion of participants with HbA1c ≤ 7.5% at 2 years. Other outcomes at 6, 12 and 24 months - moderate and severe hypoglycaemia; insulin dose; body weight; proteinuria; diabetic ketoacidosis; quality of life (QoL); fear of hypoglycaemia; treatment satisfaction; emotional well-being; qualitative interviews with participants and staff (2 weeks), and participants (6 months); and ICERs in trial and modelled estimates of cost-effectiveness. RESULTS: We randomised 46 courses comprising 317 participants: 267 attended a Dose Adjustment For Normal Eating course (132 pump; 135 MDI); 260 were included in the intention-to-treat analysis, of which 235 (119 pump; 116 MDI) had baseline HbA1c of ≥ 7.5%. HbA1c and severe hypoglycaemia improved in both groups. The drop in HbA1c% at 2 years was 0.85 on pump and 0.42 on MDI. The mean difference (MD) in HbA1c change at 2 years, at which the baseline HbA1c was ≥ 7.5%, was -0.24% [95% confidence interval (CI) -0.53% to 0.05%] in favour of the pump (p = 0.098). The per-protocol analysis showed a MD in change of -0.36% (95% CI -0.64% to -0.07%) favouring pumps (p = 0.015). Pumps were not cost-effective in the base case and all of the sensitivity analyses. The pump group had greater improvement in diabetes-specific QoL diet restrictions, daily hassle plus treatment satisfaction, statistically significant at 12 and 24 months and supported by qualitative interviews. LIMITATION: Blinding of pump therapy was not possible, although an objective primary outcome was used. CONCLUSION: Adding pump therapy to structured training in flexible insulin therapy did not significantly enhance glycaemic control or psychosocial outcomes in adults with T1DM. RESEARCH PRIORITY: To understand why few patients achieve a HbA1c of < 7.5%, particularly as glycaemic control is worse in the UK than in other European countries. TRIAL REGISTRATION: Current Controlled Trials ISRCTN61215213. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 20. See the NIHR Journals Library website for further project information

    Search for high-mass new phenomena in the dilepton final state using proton–proton collisions at View the MathML sources=13TeV with the ATLAS detector

    Get PDF
    A search is conducted for both resonant and non-resonant high-mass new phenomena in dielectron and dimuon final states. The search uses View the MathML source3.2fb−1 of proton–proton collision data, collected at View the MathML sources=13TeV by the ATLAS experiment at the LHC in 2015. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model prediction is observed; therefore limits are set on the signal model parameters of interest at 95% credibility level. Upper limits are set on the cross-section times branching ratio for resonances decaying to dileptons, and the limits are converted into lower limits on the resonance mass, ranging between 2.74 TeV and 3.36 TeV, depending on the model. Lower limits on the ℓℓqqℓℓqq contact interaction scale are set between 16.7 TeV and 25.2 TeV, also depending on the mode

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    The cost-effectiveness of domiciliary non-invasive ventilation in patients with end-stage chronic obstructive pulmonary disease:a systematic review and economic evaluation

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is a chronic progressive lung disease characterised by non-reversible airflow obstruction. Exacerbations are a key cause of morbidity and mortality and place a considerable burden on health-care systems. While there is evidence that patients benefit from non-invasive ventilation (NIV) in hospital during an acute exacerbation, evidence supporting home use for more stable COPD patients is limited. In the UK, domiciliary NIV is considered on health economic grounds in patients after three hospital admissions for acute hypercapnic respiratory failure. Objective: To assess the clinical effectiveness and cost-effectiveness of domiciliary NIV by systematic review and economic evaluation. Data sources: Bibliographic databases, conference proceedings and ongoing trial registries up to September 2014. Methods: Standard systematic review methods were used for identifying relevant clinical effectiveness and cost-effectiveness studies assessing NIV compared with usual care or comparing different types of NIV. Risk of bias was assessed using Cochrane guidelines and relevant economic checklists. Results for primary effectiveness outcomes (mortality, hospitalisations, exacerbations and quality of life) were presented, where possible, in forest plots. A speculative Markov decision model was developed to compare the cost-effectiveness of domiciliary NIV with usual care from a UK perspective for post-hospital and more stable populations separately. Results: Thirty-one controlled effectiveness studies were identified, which report a variety of outcomes. For stable patients, a modest volume of evidence found no benefit from domiciliary NIV for survival and some non-significant beneficial trends for hospitalisations and quality of life. For post-hospital patients, no benefit from NIV could be shown in terms of survival (from randomised controlled trials) and findings for hospital admissions were inconsistent and based on limited evidence. No conclusions could be drawn regarding potential benefit from different types of NIV. No cost-effectiveness studies of domiciliary NIV were identified. Economic modelling suggested that NIV may be cost-effective in a stable population at a threshold of £30,000 per quality-adjusted life-year (QALY) gained (incremental cost-effectiveness ratio £28,162), but this is associated with uncertainty. In the case of the post-hospital population, results for three separate base cases ranged from usual care dominating to NIV being cost-effective, with an incremental cost-effectiveness ratio of less than £10,000 per QALY gained. All estimates were sensitive to effectiveness estimates, length of benefit from NIV (currently unknown) and some costs. Modelling suggested that reductions in the rate of hospital admissions per patient per year of 24% and 15% in the stable and post-hospital populations, respectively, are required for NIV to be cost-effective. Limitations: Evidence on key clinical outcomes remains limited, particularly quality-of-life and long-term (> 2 years) effects. Economic modelling should be viewed as speculative because of uncertainty around effect estimates, baseline risks, length of benefit of NIV and limited quality-of-life/utility data. Conclusions: The cost-effectiveness of domiciliary NIV remains uncertain and the findings in this report are sensitive to emergent data. Further evidence is required to identify patients most likely to benefit from domiciliary NIV and to establish optimum time points for starting NIV and equipment settings. Future work recommendations: The results from this report will need to be re-examined in the light of any new trial results, particularly in terms of reducing the uncertainty in the economic model. Any new randomised controlled trials should consider including a sham non-invasive ventilation arm and/or a higher- and lower-pressure arm. Individual participant data analyses may help to determine whether or not there are any patient characteristics or equipment settings that are predictive of a benefit of NIV and to establish optimum time points for starting (and potentially discounting) NIV. Study registration: This study is registered as PROSPERO CRD42012003286. Funding: The National Institute for Health Research Health Technology Assessment programme

    A Defined Heteromeric KV1 Channel Stabilizes the Intrinsic Pacemaking and Regulates the Efferent Code of Deep Cerebellar Nuclear Neurons to Thalamic Targets

    Get PDF
    The output of the cerebellum to the motor axis of the central nervous system is orchestrated mainly by synaptic inputs and intrinsic pacemaker activity of deep cerebellar nuclear (DCN) projection neurons. Herein, we demonstrate that the soma of these cells is enriched with KV1 channels produced by mandatory multi-merization of KV1.1, 1.2 α and KV β2 subunits. Being constitutively active, the K+ current (IKV1) mediated by these channels stabilizes the rate and regulates the temporal precision of self-sustained firing of these neurons. Placed strategically, IKV1 provides a powerful counter-balance to prolonged depolarizing inputs, attenuates the rebound excitation, and dampens the membrane potential bi-stability. Somatic location with low activation threshold render IKV1 instrumental in voltage-dependent de-coupling of the axon initial segment from the cell body of projection neurons, impeding invasion of backpropagating initial segment action potentials into the somato-dendr itic compartment. The latter also promotes the dominance of clock like somatic pace-making in driving the regenerative firing activity of these neurons, to encode time variant inputs with high fidelity. Through the use of multi-compartmental modeling and retro-axonal labeling, the physiological significance of the described functions for processing and communication of information from the lateral DCN to thalamic relay nuclei is establishedPeer reviewedFinal Accepted Versio

    Morality, Social Norms and Rule of Law as Transaction Cost-Saving Devices: The Case of Ancient Athens

    No full text
    corecore