121 research outputs found

    Integrals of Motion in the Two Killing Vector Reduction of General Relativity

    Full text link
    We apply the inverse scattering method to the midi-superspace models that are characterized by a two-parameter Abelian group of motions with two spacelike Killing vectors. We present a formulation that simplifies the construction of the soliton solutions of Belinski\v i and Zakharov. Furthermore, it enables us to obtain the zero curvature formulation for these models. Using this, and imposing periodic boundary conditions corresponding to the Gowdy models when the spatial topology is a three torus T3T ^3, we show that the equation of motion for the monodromy matrix is an evolution equation of the Heisenberg type. Consequently, the eigenvalues of the monodromy matrix are the generating functionals for the integrals of motion. Furthermore, we utilise a suitable formulation of the transition matrix to obtain explicit expressions for the integrals of motion. This involves recursion relations which arise in solving an equation of Riccati type. In the case when the two Killing vectors are hypersurface orthogonal the integrals of motion have a particularly simple form.Comment: 20 pages, plain TeX, SU-GP-93/7-8, UM-P-93/7

    Campus Vol IV N 3

    Get PDF
    Hawk, Bob. Adventures of a Private Eye . Prose. 3. Gillies, Jean. The Fine Arts . Prose. 4. Hauser, Bill. After Hours Almanac . Prose. 5. Chase, Dick. Admirals of the Inland Lake . Prose. 6. Runkle, Pete. They Float Through the Air With the Greatest . Prose. 8. Barton, Rusty. Threads For the Female . Prose. 10. Crocker, Larry. Innocents Abroad . Prose. 11. Wilson, Bob. The Drums of Port Au Prince . Prose. 12. Johnston, Ed. Threads For the Male . Prose. 14. Kreuger, Ben. Column For Contributors . 15. Rounds, Dave. Untitled. Cartoon. 21. Taggart, Marilou. Nightmare . Poem. 22. Thompson, Rolan. Cover. Picture. 0. Cover, Frank and John Trimble. Campus Congratulates Emotion . Picture. 2. Rees, Tom. Our March Pin-Up Girl . Picture. 7. Rees, Tom. They Fly Through the Air With the Greatest . Picture. 8. McGlone, Joe and Tom Rees. Threads for Females . Picture. 10

    Campus Vol IV N 2

    Get PDF
    Hodgson, Don. Big Red On The Radio . Prose. 2. Hauser, Bill. After Hours Almanac . Prose. 4. Ide, Don and Bob Porter. I Remember D-Day . Picture. 6. Hawk, Bob. The Shysters: Drama in The Counselor\u27s Office a la Hemingway . Prose. 7. McGlone, Joe and Tom Rees. Terpischore Takes Over . Picture. 8. Parker, Chris. Nuns Fret Not . Prose. 9. Johnston, Ed. Fashions For Men . Prose. 10. Barton, Rusty. Fashions For Women . Prose. 11. Matthews, Jack and Joe McGlone. Campus Congratulates . Picture. 12. Rossi, Bob. Doane * 9:55 . Picture. 14. Bedell, Barrie and John Hodges. Ballroom to Boudoir . 15. Anonymous. Calender Girls For \u2750 . Picture. 16. Wittich, Hugh. Prelude . Prose. 20. Chase, Dick. The Intramural Saga . Prose. 21. Kruger, Ben. Column For Contributors . Prose. 22. Taggart, Marilou. Leaves, Oh Man! . Poem. 22. Taggart, Marilou. Christmas Fugue . Poem. 22. Froth. Untitled. Prose. 24. Anonymous. Untitled. Cartoon. 24. Optekar, Pat. Polyphemis\u27 Wrath . Prose. 5

    The Space Infrared Interferometric Telescope (SPIRIT): High-resolution imaging and spectroscopy in the far-infrared

    Full text link
    We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their inhomogeneous composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously.Comment: 20 pages, 12 figures, accepted for publication in J. Adv. Space Res. on 26 May 200

    SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas

    Get PDF
    High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore