32 research outputs found
Recommended from our members
Semi-direct allorecognition
Adaptive CD8 T-cell immunity is the principal arm of the cellular alloimmune response, but its development requires help. This can be provided by CD4 T cells that recognize alloantigen "indirectly," as self-restricted allopeptide, but this process remains unexplained, because the target epitopes for CD4 and CD8 T-cell recognition are "unlinked" on different cells (recipient and donor antigen presenting cells (APCs), respectively). Here, we test the hypothesis that the presentation of intact and processed MHC class I alloantigen by recipient dendritic cells (DCs) (the "semidirect" pathway) allows linked help to be delivered by indirect-pathway CD4 T cells for generating destructive cytotoxic CD8 T-cell alloresponses. We show that CD8 T-cell-mediated rejection of murine heart allografts that lack hematopoietic APCs requires host secondary lymphoid tissue (SLT). SLT is necessary because within it, recipient dendritic cells can acquire MHC from graft parenchymal cells and simultaneously present it as intact protein to alloreactive CD8 T cells and as processed peptide alloantigen for recognition by indirect-pathway CD4 T cells. This enables delivery of essential help for generating cytotoxic CD8 T-cell responses that cause rapid allograft rejection. In demonstrating the functional relevance of the semidirect pathway to transplant rejection, our findings provide a solution to a long-standing conundrum as to why SLT is required for CD8 T-cell allorecognition of graft parenchymal cells and suggest a mechanism by which indirect-pathway CD4 T cells provide help for generating effector cytotoxic CD8 T-cell alloresponses at late time points after transplantation.This work was supported by a British Heart Foundation project grant, the National Institute of Health Research Cambridge Biomedical Research Centre and the National Institute of Health Research Blood and Transplant Research Unit. SH was supported by an Academy of Medical Sciences / Wellcome Trust starter grant and the European Society for Organ Transplantation Junior Basic Science Research Grant. JA and IH were supported by Wellcome Trust Clinical Research Training Fellowships and Raymond and Beverly Sackler Scholarships.This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.151353311
Prolongation of allograft survival by passenger donor regulatory T cells.
Tissue resident lymphocytes are present within many organs, and are presumably transferred at transplantation, but their impact on host immunity is unclear. Here, we examine whether transferred donor natural regulatory CD4 T cells (nT-regs) inhibit host alloimmunity and prolong allograft survival. Transfer of donor-strain lymphocytes was first assessed by identifying circulating donor-derived CD4 T cells in 21 consecutive human lung transplant recipients, with 3 patterns of chimerism apparent: transient, intermediate, and persistent (detectable for up to 6 weeks, 6 months, and beyond 1 year, respectively). The potential for transfer of donor nT-regs was then confirmed by analysis of leukocyte filters recovered from ex vivo normothermic perfusion circuits of human kidneys retrieved for transplantation. Finally, in a murine model of cardiac allograft vasculopathy, depletion of donor CD4 nT-regs before organ recovery resulted in markedly accelerated heart allograft rejection and augmented host effector antibody responses. Conversely, adoptive transfer or purified donor-strain nT-regs inhibited host humoral immunity and prolonged allograft survival, and more effectively so than following administration of recipient nT-regs. In summary, following transplantation, passenger donor-strain nT-regs can inhibit host adaptive immune responses and prolong allograft survival. Isolated donor-derived nT-regs may hold potential as a cellular therapy to improve transplant outcomes.This work was supported by a British Heart Foundation project grant, the NIHR Cambridge Biomedical Research Centre and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and Royal Papworth Hospital in partnership with NHS Blood and Transplant (NHSBT). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health or NHSBT. IGH was supported by a Wellcome Trust Clinical Research Training Fellowships and Raymond and Beverly Sackler Scholarships. IGH received additional support from an Addenbrooke’s Charitable Trust Clinical Research Fellowship. RM was supported by a European Society of Organ Transplantation Junior Basic Science Grant. JHS was supported by a Gates PhD Fellowship
Recommended from our members
The role of [68 Ga]Ga-DOTATATE PET/CT in wild-type KIT/PDGFRA gastrointestinal stromal tumours (GIST).
BACKGROUND: [68 Ga]Ga-DOTATATE PET/CT is now recognised as the most sensitive functional imaging modality for the diagnosis of well-differentiated neuroendocrine tumours (NET) and can inform treatment with peptide receptor radionuclide therapy with [177Lu]Lu-DOTATATE. However, somatostatin receptor (SSTR) expression is not unique to NET, and therefore, [68 Ga]Ga-DOTATATE PET/CT may have oncological application in other tumours. Molecular profiling of gastrointestinal stromal tumours that lack activating somatic mutations in KIT or PDGFRA or so-called 'wild-type' GIST (wtGIST) has demonstrated that wtGIST and NET have overlapping molecular features and has encouraged exploration of shared therapeutic targets, due to a lack of effective therapies currently available for metastatic wtGIST. AIMS: To investigate (i) the diagnostic role of [68 Ga]Ga-DOTATATE PET/CT; and, (ii) to investigate the potential of this imaging modality to guide treatment with [177Lu]Lu-DOTATATE in patients with wtGIST. METHODS: [68 Ga]Ga-DOTATATE PET/CT was performed on 11 patients with confirmed or metastatic wtGIST and one patient with a history of wtGIST and a mediastinal mass suspicious for metastatic wtGIST, who was subsequently diagnosed with a metachronous mediastinal paraganglioma. Tumour expression of somatostatin receptor subtype 2 (SSTR2) using immunohistochemistry was performed on 54 tumour samples including samples from 8/12 (66.6%) patients who took part in the imaging study and 46 tumour samples from individuals not included in the imaging study. RESULTS: [68 Ga]Ga-DOTATATE PET/CT imaging was negative, demonstrating that liver metastases had lower uptake than background liver for nine cases (9/12 cases, 75%) and heterogeneous uptake of somatostatin tracer was noted for two cases (16.6%) of wtGIST. However, [68 Ga]Ga-DOTATATE PET/CT demonstrated intense tracer uptake in a synchronous paraganglioma in one case and a metachronous paraganglioma in another case with wtGIST. CONCLUSIONS: Our data suggest that SSTR2 is not a diagnostic or therapeutic target in wtGIST. [68 Ga]Ga-DOTATATE PET/CT may have specific diagnostic utility in differentiating wtGIST from other primary tumours such as paraganglioma in patients with sporadic and hereditary forms of wtGIST
Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant.
Chronic rejection of solid organ allografts remains the major cause of transplant failure. Donor-derived tissue-resident lymphocytes are transferred to the recipient during transplantation, but their impact on alloimmunity is unknown. Using mouse cardiac transplant models, we show that graft-versus-host recognition by passenger donor CD4 T cells markedly augments recipient cellular and humoral alloimmunity, resulting in more severe allograft vasculopathy and early graft failure. This augmentation is enhanced when donors were pre-sensitized to the recipient, is dependent upon avoidance of host NK cell recognition, and is partly due to provision of cognate help for allo-specific B cells from donor CD4 T cells recognizing B cell MHC class II in a peptide-degenerate manner. Passenger donor lymphocytes may therefore influence recipient alloimmune responses and represent a therapeutic target in solid organ transplantation.This work was supported by a British Heart Foundation project grant, the National Institute of Health Research Cambridge Biomedical Research Centre and the National Institute of Health Research Blood and Transplant Research Unit. IGH and JMA were supported by a Wellcome Trust Clinical Research Training Fellowship and Raymond and Beverly Sackler Scholarship. KSP was supported by an Academy of Medical Sciences / Wellcome Trust starter grant.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.celrep.2016.04.00
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030