22 research outputs found

    Mobile manipulators collision-free trajectory planning with regard to end-effector vibrations elimination

    Get PDF
    A sub-optimal point-to-point trajectory planning method for mobile manipulators operating in the workspace including obstacles taking into account the damping of the end-effector vibrations is presented. The proposed solution is based on extended Jacobian approach and redundancy resolution at the acceleration level. Fulfilment of the condition stopping the mobile manipulator at the destination point is guaranteed, which leads to elimination of the end-effector vibrations and significantly increases positioning accuracy. The effectiveness of the presented method is shown and compared to the classical Jacobian pseudo inverse approach. A computer example involving a mobile manipulator consisting of a nonholonomic platform (2, 0) class and SCARA-type holonomic manipulator operating in two-dimensional task space including obstacle is also presented

    Tetrahedratic mesophases, chiral order, and helical domains induced by quadrupolar and octupolar interactions

    Get PDF
    We present an exhaustive account of phases and phase transitions that can be stabilized in the recently introduced generalized Lebwohl-Lasher model with quadrupolar and octupolar microscopic interactions [ L. Longa, G. Pająk and T. Wydro Phys. Rev. E 79 040701 (2009)]. A complete mean-field analysis of the model, along with Monte Carlo simulations allows us to identify four distinct classes of the phase diagrams with a number of multicritical points where, in addition to the standard uniaxial and biaxial nematic phases, the other nematic like phases are stabilized. These involve, among the others, tetrahedratic (T), nematic tetrahedratic (NT), and chiral nematic tetrahedratic (NT*) phases of global Td, D2d, and D2 symmetry, respectively. Molecular order parameters and correlation functions in these phases are determined. We conclude with generalizations of the model that give a simple molecular interpretation of macroscopic regions with opposite optical activity (ambidextrous chirality), observed, e.g., in bent-core systems. An estimate of the helical pitch in the NT* phase is also given

    The Urogynecology Section of the Polish Society of Gynecologists and Obstetricians Guidelines for the diagnostic assessment of pelvic organ prolapse

    Get PDF
    Objectives: The aim of the team appointed by the Board of the Urogynecology Section of the Polish Society of Gynecologists and Obstetricians (PSGO) was to develop this interdisciplinary Guideline for the diagnostic assessment of pelvic organ prolapse (POP) in women, based on the available literature, expert knowledge and opinion, as well as everyday practice. Material and methods: A review of the literature, including current international guidelines and earlier PSGO recommendations (2010-2020) about POP, was conducted. Results: The steps of the diagnostic assessment for patients with POP, subdivided into initial and specialized diagnostics, have been presented. Indications for specialized diagnostic assessment have also been listed. In case of surgical treatment, the patient may be referred solely based on the initial diagnostics or after certain elements of the specialized diagnostics have been completed. Conclusions: Due to inconclusive data, the scope of the diagnostic process for POP is individualized for each patient and depends on patient-reported symptoms, initial diagnostic findings, surgical history, management plan, availability of the equipment, and cost

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Generalized dispersion model of orientationally ordered hases of bent-core liquid crystals

    No full text
    Dual symmetry of recently introduced model with quadrupolar and octupolar microscopic interactions [L. Longa, G. Pająk, and T. Wydro, Phys. Rev. E 79, 040701(R) (2009)] is explored in the mean field approximation. Exemplary phase diagrams with new nematic–like phases are shown. Among them is the homogeneous chiral phase, predicted earlier by Landau theory [T. C. Lubensky, L. Radzihovsky, Phys. Rev. E 66, 031704 (2002)]

    Molecular theory of the tilting transition in smectic liquid crystals with weak layer contraction and diffused cone orientational distribution

    No full text
    A molecular field theory of the smectic-A−smectic-C transition has been developed for smectics with a diffused cone orientational distribution of molecules (volcano-like distribution function) in the smectic-A phase and anomalously weak layer contraction in the smectic-C phase. Orientational order parameters and smectic layer spacing have been calculated numerically as functions of temperature and compared with the results obtained using a model with a standard Maier-Saupe–type distribution function that has been considered before. A molecular theory of the electroclinic effect in chiral smectics has also been developed using the recently proposed simple biaxial interaction potential. A comparison has been made between the absolute values and temperature variations of the electroclinic coefficient obtained using the volcano model, the model with Maier-Saupe–type distribution, and the orthodox cone model proposed by de Vries. It has been shown that the model with a conventional “sugar loaf” type orientational distribution function in the smectic-A phase is sufficient to describe the main properties of smectics with anomalously weak layer contraction

    Working toward Solving Safety Issues in Human–Robot Collaboration: A Case Study for Recognising Collisions Using Machine Learning Algorithms

    No full text
    The monitoring and early avoidance of collisions in a workspace shared by collaborative robots (cobots) and human operators is crucial for assessing the quality of operations and tasks completed within manufacturing. A gap in the research has been observed regarding effective methods to automatically assess the safety of such collaboration, so that employees can work alongside robots, with trust. The main goal of the study is to build a new method for recognising collisions in workspaces shared by the cobot and human operator. For the purposes of the research, a research unit was built with two UR10e cobots and seven series of subsequent of the operator activities, specifically: (1) entering the cobot’s workspace facing forward, (2) turning around in the cobot’s workspace and (3) crouching in the cobot’s workspace, taken as video recordings from three cameras, totalling 484 images, were analysed. This innovative method involves, firstly, isolating the objects using a Convolutional Neutral Network (CNN), namely the Region-Based CNN (YOLOv8 Tiny) for recognising the objects (stage 1). Next, the Non-Maximum Suppression (NMS) algorithm was used for filtering the objects isolated in previous stage, the k-means clustering method and Simple Online Real-Time Tracking (SORT) approach were used for separating and tracking cobots and human operators (stage 2) and the Convolutional Neutral Network (CNN) was used to predict possible collisions (stage 3). The method developed yields 90% accuracy in recognising the object and 96.4% accuracy in predicting collisions accuracy, respectively. The results achieved indicate that understanding human behaviour working with cobots is the new challenge for modern production in the Industry 4.0 and 5.0 concept

    Activated Carbons from Crosslinked Novolac Resin

    No full text
    Activated carbons were prepared from well-characterized Novolac resin cured with various amounts of hexamethylenetetramine (HMTA). The process consisted of curing the resin with HMTA at 200°C, carbonization in nitrogen at 600°C and gasifying the char in carbon dioxide or in steam at 900°C. The influence of the amount of HMTA used for curing on the yield and the characteristics of the activated carbon was investigated. The pore volume attained a maximum for Novolac initially cured with ca. 2 wt% HMTA. Further increase in the amount of HMTA used for curing resulted in an increase in the yield of active carbon, but the susceptibility to carbon dioxide activation decreased. Relative to carbon dioxide, the use of steam generated a narrower, but more extensive, microporosity in the char obtained from cured Novolac resin
    corecore